261 research outputs found

    Interferometric Space Missions for the Search for Terrestrial Exoplanets: Requirements on the Rejection Ratio

    Get PDF
    The requirements on space missions designed to study Terrestrial exoplanets are discussed. We then investigate whether the design of such a mission, specifically the Darwin nulling interferometer, can be carried out in a simplified scenario. The key element here is accepting somewhat higher levels of stellar leakage. We establish detailed requirements resulting from the scientific rationale for the mission, and calculate detailed parameters for the stellar suppression required to achieve those requirements. We do this utilizing the Darwin input catalogue. The dominating noise source for most targets in this sample is essentially constant for all targets, while the leakage diminishes with the square of the distance. This means that the stellar leakage has an effect on the integration time only for the nearby stars, while for the more distant targets its influence decreases significantly. We assess the impact of different array configurations and nulling profiles and identify the stars for which the detection efficiency can be maximized.Comment: 21 pages, 8 figures; TBP in Astrophysics and Space Science 200

    Complementarity and the uncertainty relations

    Get PDF
    We formulate a general complementarity relation starting from any Hermitian operator with discrete non-degenerate eigenvalues. We then elucidate the relationship between quantum complementarity and the Heisenberg-Robertson's uncertainty relation. We show that they are intimately connected. Finally we exemplify the general theory with some specific suggested experiments.Comment: 9 pages, 4 figures, REVTeX, uses epsf.sty and multicol.st

    Registration accuracy for MR images of the prostate using a subvolume based registration protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years, there has been a considerable research effort concerning the integration of magnetic resonance imaging (MRI) into the external radiotherapy workflow motivated by the superior soft tissue contrast as compared to computed tomography. Image registration is a necessary step in many applications, e.g. in patient positioning and therapy response assessment with repeated imaging. In this study, we investigate the dependence between the registration accuracy and the size of the registration volume for a subvolume based rigid registration protocol for MR images of the prostate.</p> <p>Methods</p> <p>Ten patients were imaged four times each over the course of radiotherapy treatment using a T2 weighted sequence. The images were registered to each other using a mean square distance metric and a step gradient optimizer for registration volumes of different sizes. The precision of the registrations was evaluated using the center of mass distance between the manually defined prostates in the registered images. The optimal size of the registration volume was determined by minimizing the standard deviation of these distances.</p> <p>Results</p> <p>We found that prostate position was most uncertain in the anterior-posterior (AP) direction using traditional full volume registration. The improvement in standard deviation of the mean center of mass distance between the prostate volumes using a registration volume optimized to the prostate was 3.9 mm (p < 0.001) in the AP direction. The optimum registration volume size was 0 mm margin added to the prostate gland as outlined in the first image series.</p> <p>Conclusions</p> <p>Repeated MR imaging of the prostate for therapy set-up or therapy assessment will both require high precision tissue registration. With a subvolume based registration the prostate registration uncertainty can be reduced down to the order of 1 mm (1 SD) compared to several millimeters for registration based on the whole pelvis.</p

    Diversity and Relatedness Enhance Survival in Colour Polymorphic Grasshoppers

    Get PDF
    Evolutionary theory predicts that different resource utilization and behaviour by alternative phenotypes may reduce competition and enhance productivity and individual performance in polymorphic, as compared with monomorphic, groups of individuals. However, firm evidence that members of more heterogeneous groups benefit from enhanced survival has been scarce or lacking. Furthermore, benefits associated with phenotypic diversity may be counterbalanced by costs mediated by reduced relatedness, since closely related individuals typically are more similar. Pygmy grasshoppers (Tetrix subulata) are characterized by extensive polymorphism in colour pattern, morphology, behaviour and physiology. We studied experimental groups founded by different numbers of mothers and found that survival was higher in low than in high density, that survival peaked at intermediate colour morph diversity in high density, and that survival was independent of diversity in low density where competition was less intense. We further demonstrate that survival was enhanced by relatedness, as expected if antagonistic and competitive interactions are discriminately directed towards non-siblings. We therefore also performed behavioural observations and staged encounters which confirmed that individuals recognized and responded differently to siblings than to non-siblings. We conclude that negative effects associated with competition are less manifest in diverse groups, that there is conflicting selection for and against genetic diversity occurring simultaneously, and that diversity and relatedness may facilitate the productivity and ecological success of groups of interacting individuals

    Are We Speaking the Same Language? Recommendations for a Definition and Categorization Framework for Plastic Debris

    Get PDF
    Embargo until 04 Jan 2020The accumulation of plastic litter in natural environments is a global issue. Concerns over potential negative impacts on the economy, wildlife, and human health provide strong incentives for improving the sustainable use of plastics. Despite the many voices raised on the issue, we lack a consensus on how to define and categorize plastic debris. This is evident for microplastics, where inconsistent size classes are used and where the materials to be included are under debate. While this is inherent in an emerging research field, an ambiguous terminology results in confusion and miscommunication that may compromise progress in research and mitigation measures. Therefore, we need to be explicit on what exactly we consider plastic debris. Thus, we critically discuss the advantages and disadvantages of a unified terminology, propose a definition and categorization framework, and highlight areas of uncertainty. Going beyond size classes, our framework includes physicochemical properties (polymer composition, solid state, solubility) as defining criteria and size, shape, color, and origin as classifiers for categorization. Acknowledging the rapid evolution of our knowledge on plastic pollution, our framework will promote consensus building within the scientific and regulatory community based on a solid scientific foundation.acceptedVersio
    corecore