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Synopsis 39 

Plastic pollution is a global issue. However, there is no consensus on how to define and 40 

categorize plastic debris, for instance in terms of materials or size classes. As this ambiguity 41 

creates miscommunication, we propose a framework to define plastic debris based on 42 

material properties and categorize it according to size, shape, color, and origin. This should 43 

help to clarify what we actually mean when we talk about plastic debris.  44 
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Abstract 45 

The accumulation of plastic litter in natural environments is a global issue. Concerns over 46 

potential negative impacts on the economy, wildlife, and human health provide strong 47 

incentives for improving the sustainable use of plastics. Despite the many voices raised on 48 

the issue, we lack a consensus on how to define and categorize plastic debris. This is 49 

evident for microplastics, where inconsistent size classes are used, and where the materials 50 

to be included are under debate. While this is inherent in an emerging research field, an 51 

ambiguous terminology results in confusion and miscommunication that may compromise 52 

progress in research and mitigation measures. 53 

Therefore, we need to be explicit on what exactly we consider plastic debris. Thus, we 54 

critically discuss the advantages and disadvantages of a unified terminology, propose a 55 

definition and categorization framework and highlight areas of uncertainty. 56 

Going beyond size classes, our framework includes physico-chemical properties (polymer 57 

composition, solid state, solubility) as defining criteria and size, shape, color, and origin as 58 

classifiers for categorization. Acknowledging the rapid evolution of our knowledge on plastic 59 

pollution, our framework will promote consensus-building within the scientific and regulatory 60 

community based on a solid scientific foundation.  61 



4 

1 Introduction 62 

Plastic pollution is a substantial environmental problem. Plastic debris, that is, plastic items 63 

occurring in natural environments without fulfilling an intended function, is persistent, mobile, 64 

and ubiquitous in terrestrial and aquatic environments, including urban, rural, and remote 65 

locations. Large plastic litter is readily visible and adversely affects wildlife species through 66 

entanglement, ingestion and lacerations.1 Microscopic plastic debris (i.e., microplastics) has, 67 

until recently, largely been an overlooked part of plastic pollution. This has changed in the 68 

last decade, over which time growing scientific, public, and political interest has focused on 69 

the smaller size fractions, in particular those in the micrometer size range.2 Today, research 70 

into the formation, features, further fragmentation, chemical interactions, environmental fate, 71 

and potential impacts of microplastics is increasingly abundant.3 72 

The term ‘microlitter’ was used in 2003 to describe the fine fraction of marine plastic litter with 73 

sizes of 63–500 µm.3 Similarly, mesolitter, macrolitter, and megalitter were defined as having 74 

sizes of <5 to 10 mm, <10 to 15 cm or measuring decimeters or more across, respectively.4 75 

In 2004, the term ‘microplastics’ was popularized to describe truly microscopic plastic 76 

fragments with typical diameters down to ∼20 μm.5 While this paper described the 77 

accumulation of microplastics in the seas around the United Kingdom, it did not define them. 78 

In 2008, experts attending a meeting hosted by NOAA proposed a working definition in which 79 

microplastics are all plastic particles <5 mm in diameter,6 which has become the most 80 

frequently used definition. Although not yet detected in environmental samples, sub-micron 81 

sized particles are expected to form in the environment through fragmentation of larger 82 

plastics.7, 8 These have been termed nanoplastics.9, 10 Due to the evolving research on plastic 83 

debris, a certain nomenclature has developed. Nonetheless, the terminology remains 84 

ambiguous and conflicting, for instance regarding the size classes (Figure 1). So far, “[t]here 85 

is no internationally agreed definition of the size below which a small piece of plastic should 86 

be called a microplastic”.11 87 
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In the context of this paper, categorization refers to a systematic division of plastic debris into 88 

groups according to pre-established criteria. Hereby, plastic objects are grouped based on 89 

similarity. A commonly used categorization system is based on size using the prefixes of 90 

mega-, macro-, meso-, micro-, and nano. In addition, plastic debris can also be categorized 91 

based on their origin, shape, and polymer type.12 However, a systematic framework for 92 

categorizing plastic debris is currently missing. 93 

While most of the discourse on what makes a plastic item, for instance, a “microplastic” 94 

focuses on size as only criterion,13 we first need to revisit the question of what plastics 95 

actually are. This is important because – apart from the commodity polymers – there is no 96 

consensus on which materials to include in the term ‘plastics’. For instance, some studies 97 

consider cellophane, i.e., regenerated cellulose, as plastics14, 15 while it can be argued that it 98 

is not. In addition, definition criteria from polymer sciences are not stringently applicable to 99 

plastic debris. For instance, rubber is not plastic according to some polymer chemistry 100 

definitions.16 Yet, environmental researchers consider rubber-containing tire wear a major 101 

component of microplastic pollution.17, 18 The same is true for paint particles. To clarify, we 102 

discuss basic physico-chemical properties as ‘definition criteria’ before considering size, 103 

shape, color, and origin as ‘classification criteria’ for the categorization of plastic debris.  104 
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2 Do we need a common terminology?  105 

The lack of consensus on a definition and categorization of plastic debris results in an 106 

ambiguous communication and the generation of incomparable data. While this situation 107 

inevitably calls for a harmonization, we need to keep in mind the implications of such a 108 

framework. Categorizing plastic debris into different classes (e.g., sizes) implicitly suggests 109 

that the items within one category have some ‘likeness’ whereas plastics in different 110 

categories are somehow different. This may be perceived as similarity in hazardous 111 

properties or environmental behavior. Such connotation has emerged for the term 112 

microplastics, using size as a key feature, already.19 On the downside, this may point 113 

research towards properties that are irrelevant and result in neglecting features that are 114 

potentially important. A framework can, thus, shape the research field and affect current and 115 

future mitigation measures based on how it frames the problem. This will also affect the risk 116 

perception and the hypotheses generated to examine it.20 117 

In the area of engineered nanomaterials, the process of agreeing on a common terminology 118 

has been ongoing for more than a decade and is under continuous debate21, 22 and 119 

revision.23 For nanomaterials, the European Commission ‘Recommendation on a Definition 120 

of Nanomaterials’ states that: “an upper limit of 100 nm is commonly used by general 121 

consensus, but there is no scientific evidence to support the appropriateness of this value.”24 122 

It has been further specified that “clear [size] boundaries were primarily introduced with the 123 

regulatory purpose of the definition in mind rather than for scientific reasons.”23 Hence, the 124 

size boundaries are not scientifically justified but rather based on pragmatic reasons and 125 

general consensus. As behavior and toxicity will also depend on properties other than size, a 126 

purely scientific definition of nanomaterials may never be achieved – at least not if it shall 127 

have any practical value. 128 

For plastic debris, similar considerations do apply: There is no clear scientific justification for 129 

the currently applied size boundaries. The 5 mm upper limit for microplastics proposed by 130 

NOAA6 is somewhat biologically informed as particles of this size were considered more 131 
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likely to be ingested compared to larger items. Still, the decision on size limits is not based 132 

on actual evidence but rather on pragmatism.11 133 

Ultimately, the question whether to establish a definition/categorization framework for plastic 134 

debris is at the heart of two conflicting points of view. On the one hand, there is the notion to 135 

refute any attempt to unify the terminology as this restricts scientific freedom and narrows 136 

down the scientific focus to what is included in the definition. On the other hand, there is the 137 

view that a globally accepted definition is an essential prerequisite to tackle the issue, 138 

especially from a regulatory perspective.25 As environmental scientists, we work in the space 139 

between these poles and can neither ignore the importance of academic freedom nor our 140 

obligation to support science-based policy-making. While we acknowledge that a flexible, 141 

adaptive, and continuously updated framework would be ideal for science, we recognize that 142 

this conflicts with regulatory needs and processes. For instance, the control of microplastic 143 

emissions will depend on a common definition. Accordingly, the discourse needs to focus on 144 

developing a pragmatic and workable framework enabling effective regulation while not 145 

restraining scientific freedom.  146 
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3 Guiding principles for formulating a definition/categorization framework 147 

When developing a framework for defining and categorizing plastic debris, we considered the 148 

following guiding principles, assumptions and disclaimers: 149 

1) A definition/categorization framework should not be tied to current methodological and 150 

analytical capabilities as these evolve constantly. 151 

2) A definition/categorization framework should not be limited to size as sole criterion as 152 

properties other than size contribute to the impacts of plastic debris. 153 

3) A definition can be based on scientific criteria using the physical and chemical properties 154 

of the materials included as plastics. 155 

4) A categorization cannot be purely science-based because the biologically relevant 156 

properties needed to categorize plastic objects are not well understood. 157 

5) Accordingly, any categorization will, to some extent, be arbitrary and must be based on 158 

conventions formed by consensus and guided by pragmatism.  159 

6) Thus, the proposed definition/categorization framework is a recommendation that aims at 160 

promoting consensus-building on a common terminology. 161 

7) Consensus-building in academia is a dynamic process rather than a one-time decision. 162 

Thus, the proposed framework must be subjected to criticism and revision. 163 

8) Regardless of the existence of this or any other definition/categorization framework, 164 

scientific data should always be reported in the most comprehensive way, that is, in 165 

accordance with the latest state of the science. 166 

9) A material should not be excluded from the framework based on its degradability or state 167 

of degradation as even “degradable” materials will form smaller fragments before they 168 

mineralize. 169 

10) The main audience of this framework are researchers, as a common terminology needs 170 

to form in the community producing the primary knowledge on plastic pollution. However, 171 

the framework can also serve as point of departure for policy-makers and the regulatory 172 

community.  173 
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4 Recommendation of a definition/categorization framework for plastic debris 174 

To structure the discussion on what plastic debris is, we propose a framework which 175 

differentiates between defining criteria that address basic properties and auxiliary criteria for 176 

categorizing plastic debris (principle 3 and 4, Figure 2). According to Merriam-Webster’s 177 

dictionary, a definition is “a statement expressing the essential nature of something.“ A good 178 

question to ask about any definition is therefore: does it actually capture the property that we 179 

are trying to define? For plastic debris, we consider the following as relevant defining 180 

properties: chemical composition, solid state, and solubility (criteria I-III). These will 181 

determine whether a material classifies as ‘plastic’ and, thus, ‘plastic debris’ when found in 182 

natural environments. For further categorization, we discuss size, shape and structure, color, 183 

and origin (criteria IV-VII). 184 

 185 

4.1 Criterion I: Chemical composition 186 

The chemical composition is the most fundamental criterion for defining plastic debris. Some 187 

disagreement exists on which polymers should be considered ‘plastics’. For instance, 188 

according to ISO plastic is a “material which contains as an essential ingredient a high 189 

molecular weight polymer and which, at some stage in its processing into finished products, 190 

can be shaped by flow.”16 In contrast to thermoplastics and thermosets, some elastomers 191 

(e.g., rubbers) are excluded from this definition. This mirrors the industrial landscape and, 192 

thus, has historic rather than scientific reasons. Questions, therefore, arise whether materials 193 

derived from rubber or inorganic/hybrid polymers (e.g., silicone) qualify as plastics. Also, are 194 

plastics with a high content of low-molecular weight additives (e.g., polyvinyl chloride (PVC) 195 

containing >50% plasticizers) included? And should polymer composites fall under such a 196 

definition? Finally, should crystalline fibers, which are not shaped by flow, be excluded from a 197 

definition even though they are composed of the same polymers as other plastic debris? 198 

These questions reflect the different perspectives of material and environmental sciences. 199 

a.  Polymers 200 
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As the ISO definition of plastics excludes certain materials, which are relevant in 201 

environmental terms (e.g., elastomers), we use a broader definition as point of departure. 202 

IUPAC defines a polymer as a “molecule of high relative molecular mass, the structure of 203 

which essentially comprises the multiple repetition of units derived, actually or conceptually, 204 

from molecules of low relative molecular mass.”26 Typically, polymers have a molecular mass 205 

of >10,000 g mol-1.27 206 

As a next level, we can use the origin of the polymer as criterion and differentiate between 207 

natural and artificial (man-made, synthetic) polymers. With regard to the former, there is 208 

agreement that natural polymers (e.g., DNA, proteins, wool, silk, cellulose) are not plastics 209 

while synthetic polymers commonly are. Modified natural polymers, natural rubber and 210 

cellulose further processed to make the final polymer (rayon and cellophane) for instance, 211 

represent a special case. Because these polymers are heavily modified, they can also be 212 

considered artificial and should be included in a definition of plastic debris. 213 

The inclusion of natural polymers that have been slightly processed (e.g., dyed wool) is more 214 

difficult. This predominantly concerns polymer fibers used for textiles and we do not have 215 

sufficient information to benchmark the occurrence and impacts of natural, modified natural, 216 

and synthetic fibers, respectively. However, because their essential ingredient is a natural 217 

polymer, we propose to exclude slightly modified natural fibers from a definition.28 218 

Conventional plastics are petroleum-based and include the commodity plastics polyethylene 219 

(PE), polypropylene (PP), polyurethane, polyethylene terephthalate (PET), polystyrene (PS), 220 

and PVC. Recently, bio-based plastics synthesized from non-fossil feedstock have entered 221 

the market. Bio-based monomers can be used to make the conventional polymers (e.g., bio-222 

PET, bio-PE) or biodegradable polymers such as polylactic acid and 223 

polyhydroxyalkanoates.29 A third type of plastics is mainly produced from inorganic 224 

monomers. These inorganic or hybrid polymers – silicone is the most prominent example – 225 

are usually excluded from plastics definitions, since they are elastomers. However, because 226 

all three polymer classes are synthetic and are emitted to the environment, we recommend 227 

including them in a definition of plastic debris. 228 
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b.  Additives 229 

Plastics can contain a broad range of low molecular weight additives to improve their 230 

processability, properties, and performance. They are, thus, an essential part of the 231 

formulation. The major classes of additives include plasticizers, stabilizers, flame retardants, 232 

flow modifiers, processing aids, impact modifiers, and antioxidants.30, 31 In addition, pigments, 233 

biocides, and fragrances can be added. Additives and other small molecules present in 234 

plastics (e.g., monomer residues or by-products formed during production) may be 235 

toxicologically relevant when leaching from the material. Nonetheless, they are not of specific 236 

importance for a definition because the polymer backbone, not its additive content, defines a 237 

plastic material. Polymers containing high amounts of additives (e.g., PVC) represent a 238 

special case. According to REACH,32 substances with an additive content of >50% are not 239 

polymers. In contrast, we propose to exclude the additive content as criterion because it will 240 

change continuously after the release into in the environment. 241 

c.  Copolymers 242 

Some synthetic polymers are produced “from more than one species of monomer.”26 These 243 

include copolymers of acrylonitrile-butadiene-styrene (ABS), ethylene-vinyl acetate (EVA), 244 

and styrene-butadiene rubber (SBR). ABS and EVA are thermoplastic polymers (i.e., 245 

‘plastics’ according to ISO) and, thus, can be considered plastic debris when found in the 246 

environment. The same argument can be applied to thermoplastic elastomers, such as 247 

styrenic block copolymers, thermoplastic olefins, and thermoplastic polyurethanes, which are 248 

widely used in automotive manufacturing. In line with the arguments made above, SBR (also 249 

an elastomer) and other synthetic rubber copolymers should be included in a definition.  250 

d.  Composites 251 

Polymer composites consist of at least two components; the polymer matrix and 252 

(non)polymeric reinforcement. Classical thermoset composites include glass fiber-reinforced 253 

polyester or graphite reinforced epoxy, both used for instance for boat hulls. This also 254 

includes thermoplastics filled with various inorganic materials to reduce costs or improve 255 
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properties. Likewise, polyester textiles are often mixed with cotton or wool. We recommend 256 

including composites into a definition of plastic debris because synthetic polymers are an 257 

essential ingredient. However, it remains unknown whether setting a minimum polymer 258 

content of a material to qualify as plastics is appropriate and feasible. 259 

Special cases 1:  Surface coatings 260 

One special case of composites are paint particles found in the environment. Surface 261 

coatings (such as paints) are applied as a thin layer to a surface for aesthetic or protective 262 

reasons.33 Coatings are formulated, multi-component systems consisting of binders, 263 

pigments, fillers and extenders, solvents, and additives. Polymers are used as film formers 264 

and include (modified) natural resins, curing coating systems (e.g., polyester, alkyds, epoxy 265 

resin, urethane resins), and physically drying systems (acryl and vinyl (co)polymers).33 266 

The central question for including coating particles in a definition is whether the synthetic 267 

polymers used in surface coatings are considered plastics. Recent government reports argue 268 

that they should.34, 35 Indeed, particles originating from dried paints and lacquers containing 269 

cured thermosets can be considered plastic debris. Examples are coatings based on 270 

polyesters, vinyl esters, polyurethanes as well as epoxy, phenolic, acrylic resins and alkyd.34 271 

Accordingly, particles derived from paints and surface coatings containing synthetic polymers 272 

as an essential ingredient should be included in a definition. However, as in the case of 273 

composites, setting a threshold for a minimal polymer content is currently not possible. 274 

Special case 2:  Tire wear particles 275 

Driving vehicles releases particles due to the abrasion of tires, termed tire wear particles 276 

(TWP). Some agencies have considered TWP to be ‘microplastics’34, 36-38 because tires 277 

usually contain 40–60% of synthetic polymers (e.g., SBR or polybutadiene rubber). The 278 

exact composition of tires depends on their application.18 To classify TWP as plastic debris, 279 

two questions need to be addressed: First, are rubbers plastics? Here, we argue that they 280 

should be covered by the proposed definition (see criterion Ic). Second, do we need to take 281 

into account a changing chemical and material composition during weathering? As an 282 
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example, TWP will aggregate with road particles and form tire wear and road particles 283 

(TWRP) with a lower total polymer content. We argue it is not feasible to determine the 284 

polymer content of TWRP as this would need to happen for each individual particle. This is 285 

also true for other plastic particles forming heteroaggregates with other particulate matter. 286 

Accordingly, we propose to refer to the original material and to include TWP/TWRP in the 287 

definition because synthetic polymers are an essential ingredient of tires. 288 

 289 

4.2 Criterion II: Solid state  290 

While it might be common sense that plastics are solid materials, some polymers can be 291 

wax-like, semi-solid or liquid. According to the Global Harmonized System for Classification 292 

and Labelling of Chemicals (GHS) a solid substance or mixture “does not meet the 293 

definitions of liquid or gas.” As most polymers have a vapor pressure of <300 kPa (at 50 °C) 294 

and an initial melting point of >20 °C (Tm at 101.3 kPa) they are solid.39 For most materials, 295 

the Tm determines the difference between the solid and the liquid state. However, amorphous 296 

and semi-crystalline plastics will behave differently when heated. Amorphous polymers (e.g., 297 

polymethyl methacrylate, ABS, PS) are hard, brittle materials below their glass transition 298 

temperature (Tg), whereas they become viscous and free flowing above. Semi-crystalline 299 

polymers (e.g., polyamide, polycarbonate, PE, PET, PP, PVC) have both, a Tg as well as a 300 

Tm. These polymers will be hard and brittle below their Tg but ductile, soft, and form stable 301 

below their Tm, and liquid above. 302 

Plastics are used both as hard and brittle as well as softer and more ductile materials 303 

(plasticized PVC, PE, PP) and depending on molecular weight exist as waxy, semi-solids 304 

over a broad temperature range. For some polymers (e.g., rubber, PE, PP, PVC), Tg is 305 

relatively low. Accordingly, they are soft solids at ambient temperatures. Nevertheless, semi-306 

crystalline polymers have a Tm high enough to classify them as solid according to GHS and 307 

can be included in a definition of plastic debris. 308 
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In contrast, amorphous polymers lack a specific Tm. Therefore, we propose to consider the Tg 309 

as a defining value. Accordingly, amorphous polymers with a Tg >20 °C should be included in 310 

a definition. Here, the properties of the bulk materials should be considered. However, the 311 

question remains whether wax-like polymers with a Tg <20 °C should be included as well. In 312 

this regard, the combination with other physico-chemical properties, such as viscosity, 313 

modulus of elasticity or tension at constant elongation, might be helpful. 314 

Special case 3: Polymer gels 315 

Polymer gels are often perceived as liquid rather than solid, due to their high liquid content 316 

and their soft and flexible appearance. However, in macromolecular science a gel is indeed 317 

“a solid composed of at least two components, one of which (polymer) forms a three-318 

dimensional network […] in the medium of the other component (liquid).”40 Polymer gels 319 

come from a natural (e.g., gelatin, agarose) or synthetic feedstock (polyacrylamide, polyvinyl 320 

alcohol (PVA), low molecular weight polyethylene glycol (PEG)) and are used in a wide 321 

variety of applications. For instance, polyacrylamide copolymers are used as flocculation 322 

agents during wastewater treatment. While these gels are “solid” from a chemical 323 

perspective, they will become soft and viscous in water. Although this does not make them 324 

benign per se (we simply do not know), we argue that polymer gels are not particulate matter 325 

once in aquatic environments and should, therefore, be excluded from a definition and 326 

treated as an independent category of environmental polymers. 327 

 328 

4.3 Criterion III: Solubility 329 

Another important aspect is the polymer’s solubility. Most conventional polymers are poorly 330 

soluble in water, but some synthetic polymers readily dissolve in water (e.g., PVA or low 331 

molecular weight PEG). We propose using solubility as a criterion to define plastic debris and 332 

apply the REACH guidance provided by ECHA. Here, a substance is considered poorly 333 

soluble if their water solubility is <1 mg L-1 at 20 °C.41 Polymers that are poorly soluble 334 

according to REACH should be included in a definition of plastic debris.  335 
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 336 

4.4 Criterion IV: Size 337 

Size is the criterion most frequently used to categorize plastic debris, with size classes 338 

typically attributed with the nomenclature of nano-, micro-, meso-, and macroplastics. Particle 339 

size will be of major ecological relevance because it is one important factor determining the 340 

item’s interaction with biota and its environmental fate.42-44 Currently, there is no clear 341 

consensus on the use of size categories (Figure 1). Often, size limits are operationally 342 

defined by the sampling method. As an example, some authors set the lower size limit of 343 

microplastics to 333 µm because a 333 µm mesh plankton net is used for sampling.6 344 

From a nomenclature point of view, it is intuitive to categorize the plastics based on the 345 

conventional units of size. Accordingly, plastics with sizes in the nanometer scale (1–1,000 346 

nm) should be nanoplastics. Following this reasoning and using the SI prefixes for length, 347 

microplastics would have sizes of 1–1,000 µm, followed by milliplastics (1–10 mm), 348 

centiplastics (1–10 cm), deciplastics (1–10 dm). This, however, conflicts with the current 349 

terminology. For example, nanoplastics and microplastics are typically considered to be 1–350 

100 nm and 1–5,000 µm in size, respectively.45 Accordingly, new size categories, fully 351 

consistent with the SI nomenclature, would have little chance of being adopted by the 352 

scientific community. As a pragmatic compromise, we propose the following categories: 353 

-   Nanoplastics: 1 to <1,000 nm,* 354 

-   Microplastics: 1 to <1,000 µm, 355 

-   Mesoplastics: 1 to <10 mm, 356 

-   Macroplastics: 1 cm and larger. 357 

*To conform to existing definitions of nanomaterials, a sub-division in nanoplastics (1 to <100 358 

nm) and submicron-plastics (100 to <1,000 nm) can be made. 359 

Another important question relates to the dimensions of the plastic item. Is it sufficient that it 360 

possesses the given size in one, two or three dimensions to fall into one of the categories? 361 
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Current size classes for microplastics refer to the largest dimension of the item. This is 362 

straightforward for relatively spherical particles but more ambiguous for irregular particles 363 

and fibers.45 For example, should a fiber with a diameter (i.e., two dimensions) of 500 µm 364 

and a length (i.e., one dimension) of 20 mm be classified as microplastic or macroplastic? If 365 

two dimensions in the micrometer range would be sufficient to qualify as a microplastic, this 366 

would theoretically imply that a thin thread of infinite length would still be a microplastic. This 367 

would correspond to the current practice of determining size by filtration through a net of a 368 

certain mesh size or by microscopy, whereby two dimensions are considered. However, a 369 

classification should not be based on current practices, which may change as the 370 

methodology advances. We, therefore, propose to use the largest dimension as classifier for 371 

the size category. The rationale behind this is that the largest dimension of an item will 372 

mainly determine the ingestion by biota. For fibers, we do recognize that the diameter may 373 

be more relevant and suggest that the dimensions used for categorization should then be 374 

defined in the specific study. 375 

 376 

4.5 Criterion V: Shape and structure 377 

Aside from size, plastic debris is commonly categorized based on shape, structure, and 378 

color. Frequent descriptors of shape are: spheres, beads, pellets, foams, fibers, fragments, 379 

films, and flakes.46-49 These are worth revisiting in order to apply a more stringent 380 

classification. The first three (spheres, pellets, beads) are often used synonymously. 381 

Additionally, the terms ‘beads’ and ‘pellets’ hints towards the origin of the particles, such as 382 

microbeads in cosmetics and pre-production pellets used for plastic manufacturing. If the 383 

origin of the specific particle can indeed be elucidated this would be an appropriate 384 

terminology. However, as this is often challenging it is instead beneficial to adopt more 385 

neutral descriptors, such as ‘spheres’ for particles with every point on its surface having the 386 

same distance from its center. The terms 'spheroids' and ‘cylindrical pellets’ can be used for 387 

approximate spheres and cylindrical shapes, respectively. 388 
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‘Fragments’ also represent a rather ambiguous category. It is commonly adopted to describe 389 

particles with irregular shape. The term, however, implies that these have been formed by 390 

fragmentation in the environment, which is not necessarily the case. For instance, irregular 391 

abrasives used in cosmetics are produced as such50-52 and cannot be distinguished from 392 

particles generated by secondary fragmentation. While the category ‘fragment’ is likely to 393 

persist in the literature, an alternative and more accurate term is ‘irregular particles’. 394 

The category of ‘films’ is rather straight-forward as this includes planar objects which are 395 

considerably smaller in one dimension than in the other two. It is useful to classify films 396 

separately and it is often feasible to make that distinction for items >300 µm. Smaller objects 397 

tend to overlap and, due to practical constraints, may be pooled with ‘irregular particles’. 398 

Plastics that are significantly longer in one than wide in two dimensions (length-to-diameter 399 

ratio) are commonly (and interchangeably) described as fibers or filaments, with both terms 400 

describing thread-like structures. Within toxicology there is a long-standing tradition of 401 

referring to such structures as fibers rather than filaments. 402 

For some types of fibers, their aspect ratio has been found to determine toxicological 403 

responses, for example in the case of asbestos and carbon nanotubes. Hence, from a 404 

toxicological perspective it makes sense to distinguish between different shapes of plastic 405 

debris using the neutral terminology described above. Additional information on the structure 406 

(e.g., material porosity) can be included when relevant and only when it can be established 407 

with certainty. For example, the descriptor ‘foams’ can draw unwanted parallels to styrofoam 408 

even though several plastic types can be visually similar. A more neutral descriptor for this 409 

type of porous materials would be ‘expanded cellular plastics’. 410 

 411 

4.6 Criterion VI: Color 412 

Categorizing plastic debris according to color is useful to identify potential sources as well as 413 

potential contaminations during sample preparation. As with shape, the color of an object 414 

cannot easily be used to deduce the origin. Importantly, color information can be biased as 415 
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brighter colors are spotted more easily during visual inspection. In contrast, dark, transparent 416 

or translucent particles may be underrepresented. In addition, discoloration can take place 417 

during weathering as well as sample preparation, which should be considered in data 418 

reporting and interpretation. While we do not find color to be crucial in a categorization 419 

framework, it can make sense to include color as an additional descriptor. This can be the 420 

case in a biological context, where depending on an organism’s feeding preferences, some 421 

colored plastic objects may be more or less likely to be mistaken as food.53 As attributing 422 

colors may be subjective, the use of a standardized color palette, such as the Pantone Color 423 

Matching System, is preferable. 424 

  425 

4.7 Optional criterion VII: Origin 426 

The origin of plastic debris is commonly used as a classifier, especially for microplastics, 427 

which are categorized in ‘primary’ and ‘secondary’ microplastics. In the predominant view, 428 

‘primary’ refers to microplastics intentionally produced in that size range whereas ‘secondary’ 429 

microplastics are formed in the environment through fragmentation or through wear and tear 430 

of plastic-containing items, such as TWP and fibers released from textiles during use.11 An 431 

alternative perspective is that ‘primary’ also includes microplastics that are inherent by-432 

products of the use of a product (“primary sources”),35, 37 such as TWP. In that view, 433 

secondary microplastics would originate from fragmentation during weathering, only. Since it 434 

is challenging, if not impossible, to determine whether a particle has been generated by 435 

fragmentation during intentional use or in the environment, we prefer to use the former 436 

classification. 437 

From a regulatory point of view, it is relevant to distinguish between primary and secondary 438 

origin. This has consequences for risk management25, 54 as it may enable assigning 439 

responsibilities and apply the polluter pays principle. However, from a biological perspective, 440 

it does not matter if the plastic object encountered by an organism is intentionally 441 

manufactured. In addition, while primary microplastics tend to be more uniform and 442 
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homogenous (e.g., microbeads), this is not always the case.50 A subsequent weathering will 443 

further change the appearance, rendering a clear-cut distinction between primary and 444 

secondary (micro)plastics often infeasible. Because of this ambiguity, we suggest not to use 445 

‘origin’ to categorize plastics unless the primary origin of plastic debris can be established 446 

convincingly. One such case is the detection of microbeads originating from ion exchange 447 

resins from a specific production site.55  448 
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5 Moving towards a workable terminology for plastic debris 449 

The research on plastics in the environment is still in its infancy. This makes it an exciting 450 

and dynamic field but inevitably entails a certain scientific immaturity with regards to the 451 

hypotheses, concepts, and methods applied. This is also true in terms of the terminology we 452 

use. To promote consensus-building, we provide a framework for defining and further 453 

categorizing ‘plastic debris’. We identify three defining criteria and four classifiers that can be 454 

used in such a framework. Based on this, we propose to define ‘plastic debris’ as objects 455 

consisting of synthetic or heavily modified natural polymers as an essential ingredient 456 

(criterion I) that, when present in natural environments without fulfilling an intended function, 457 

are solid (II) and insoluble (III) at 20 °C. We further recommend using the criteria size (IV), 458 

shape (V), color (VI), and origin (VII) to further categorize plastic debris (Table 1, Figure 2). 459 

Each criterion covers aspects on which consensus is likely as well as elements which are 460 

more debatable. Accordingly, the content of the framework cannot be fixed but may be 461 

revised as the field evolves. Thus, we welcome critical input by the readers and encourage a 462 

broader debate of this matter in the scientific community.  463 
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Tables 642 

Table 1. Overview of the recommendations for a definition and classification of plastic debris. 643 

Criterion Recommendation Examples 
Ia: Chemical composition  
P Include All synthetic polymers: 

§ Thermoplastics 
§ Thermosets 
§ Elastomers 
§ Inorganic/hybrid 

 
All commodity plastics 
Polyurethanes, melamine 
Synthetic rubber 
Silicone 

P Include Heavily modified natural polymers 
(semi-synthetic) 

Vulcanized natural rubber, 
regenerated cellulose 

O Exclude Slightly modified natural polymers Dyed natural fibers 
Ib: Additives   
P Include All polymers included in Ia 

disregarding their additive content 
Plasticized PVC with >50 % additives 

Ic: Copolymers   
P Include  All copolymers ABS, EVA, SBR 
Id: Composites   
P Include All composites containing synthetic 

polymer as essential ingredient 
Reinforced polyester and epoxy 

P Include All surface coatings containing 
polymers as essential ingredient 

Paints containing polyester, PUR, 
alkyd, acrylic, epoxy resin 

P Include Tire wear (and road) particles - 
? Open question Is it necessary to define a minimum polymer content? 
II: Solid state   
P Include All polymers with a Tm or Tg >20 °C See examples in Ia 
O Exclude Polymer gels PVA, PEG 
? Open question Should wax-like polymers (Tg <20 °C) be included? 
III: Solubility 
P Include 

All polymers with a solubility <1 mg L-1 
at 20 °C 

See examples in Ia 

IV: Size  § Nanoplastics: 1 to <1,000 nm 
§ Microplastics: 1 to <1,000 µm 
§ Mesoplastics: 1 to <10 mm 
§ Macroplastics: 1 cm and larger 
The largest dimension of the object determines the category. Comprehensive 
reporting of dimensions is preferred (e.g., for fibers). 

V: Shape and 
structure 

Spheres: Every surface point has the same distance from the center 
Spheroid: Imperfect but approximate sphere 
Cylindrical pellet: Rod-shaped, cylindrical object 
Fragment: Particle with irregular shape 
Film: Planar, considerably smaller in one than in the other dimensions 
Fiber: Significantly longer in one than wide in two dimensions 
Additional information on the structure (e.g., porosity) can be included. 

VI: Color Not crucial for a categorization but useful in a biological context (e.g., when color 
is a cue for ingestion). Use a standardized color palette. 

VII: Origin Primary: Intentionally produced in a certain size 
Secondary: Formed by fragmentation in the environment or during use 
Origin should only be used if the primary origin can be established. 

  644 
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Figures 645 

 646 

 647 

Figure 1. Examples of differences in the categorization of plastic debris according to size as 648 

applied (and/or defined) in scientific literature and in institutional reports. It should be noted 649 

that this does not represent an exhaustive overview of all used size classes.  650 

 651 

Figure 2. Proposed definition and categorization framework. Excl. = excluded, see Table 1 652 

for details on criteria. 653 
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