359 research outputs found

    Rapid and controlled electrochemical synthesis of crystalline niobium oxide microcones

    Full text link

    Selective Purification of Recombinant Neuroactive Peptides Using the Flagellar Type III Secretion System

    Get PDF
    The structure, assembly, and function of the bacterial flagellum involves about 60 different proteins, many of which are selectively secreted via a specific type III secretion system (T3SS) (J. Frye et al., J. Bacteriol. 188:2233–2243, 2006). The T3SS is reported to secrete proteins at rates of up to 10,000 amino acid residues per second. In this work, we showed that the flagellar T3SS of Salmonella enterica serovar Typhimurium could be manipulated to export recombinant nonflagellar proteins through the flagellum and into the surrounding medium. We translationally fused various neuroactive peptides and proteins from snails, spiders, snakes, sea anemone, and bacteria to the flagellar secretion substrate FlgM. We found that all tested peptides of various sizes were secreted via the bacterial flagellar T3SS. We subsequently purified the recombinant μ-conotoxin SIIIA (rSIIIA) from Conus striatus by affinity chromatography and confirmed that T3SS-derived rSIIIA inhibited mammalian voltage-gated sodium channel NaV1.2 comparably to chemically synthesized SIIIA

    Genetic Characterization of Conserved Charged Residues in the Bacterial Flagellar Type III Export Protein FlhA

    Get PDF
    For assembly of the bacterial flagellum, most of flagellar proteins are transported to the distal end of the flagellum by the flagellar type III protein export apparatus powered by proton motive force (PMF) across the cytoplasmic membrane. FlhA is an integral membrane protein of the export apparatus and is involved in an early stage of the export process along with three soluble proteins, FliH, FliI, and FliJ, but the energy coupling mechanism remains unknown. Here, we carried out site-directed mutagenesis of eight, highly conserved charged residues in putative juxta- and trans-membrane helices of FlhA. Only Asp-208 was an essential acidic residue. Most of the FlhA substitutions were tolerated, but resulted in loss-of-function in the ΔfliH-fliI mutant background, even with the second-site flhB(P28T) mutation that increases the probability of flagellar protein export in the absence of FliH and FliI. The addition of FliH and FliI allowed the D45A, R85A, R94K and R270A mutant proteins to work even in the presence of the flhB(P28T) mutation. Suppressor analysis of a flhA(K203W) mutation showed an interaction between FlhA and FliR. Taken all together, we suggest that Asp-208 is directly involved in PMF-driven protein export and that the cooperative interactions of FlhA with FlhB, FliH, FliI, and FliR drive the translocation of export substrate

    Ejection of damaged mitochondria and their removal by macrophages ensure efficient thermogenesis in brown adipose tissue

    Get PDF
    Recent findings have demonstrated that mitochondria can be transferred between cells to control metabolic homeostasis. Although the mitochondria of brown adipocytes comprise a large component of the cell volume and undergo reorganization to sustain thermogenesis, it remains unclear whether an intercellular mitochondrial transfer occurs in brown adipose tissue (BAT) and regulates adaptive thermogenesis. Herein, we demonstrated that thermogenically stressed brown adipocytes release extracellular vesicles (EVs) that contain oxidatively damaged mitochondrial parts to avoid failure of the thermogenic program. When re-uptaken by parental brown adipocytes, mitochondria-derived EVs reduced peroxisome proliferator-activated receptor-γ signaling and the levels of mitochondrial proteins, including UCP1. Their removal via the phagocytic activity of BAT-resident macrophages is instrumental in preserving BAT physiology. Depletion of macrophages in vivo causes the abnormal accumulation of extracellular mitochondrial vesicles in BAT, impairing the thermogenic response to cold exposure. These findings reveal a homeostatic role of tissue-resident macrophages in the mitochondrial quality control of BAT

    Adaptation in bacterial flagellar and motility systems: from regulon members to ‘foraging’-like behavior in E. coli

    Get PDF
    Bacterial flagellar motility and chemotaxis help cells to reach the most favorable environments and to successfully compete with other micro-organisms in response to external stimuli. Escherichia coli is a motile gram-negative bacterium, and the flagellar regulon in E. coli is controlled by a master regulator FlhDC as well as a second regulator, flagellum-specific sigma factor, σF. To define the physiological role of these two regulators, we carried out transcription profiling experiments to identify, on a genome-wide basis, genes under the control of these two regulators. In addition, the synchronized pattern of increasing CRP activity causing increasing FlhDC expression with decreasing carbon source quality, together with the apparent coupling of motility activity with the activation of motility and chemotaxis genes in poor quality carbon sources, highlights the importance of CRP activation in allowing E. coli to devote progressively more of its limited reserves to search out better conditions. In adaptation to a variety of carbon sources, the motile bacteria carry out tactical responses by increasing flagellar operation but restricting costly flagellar synthesis, indicating its capability of strategically using the precious energy in nutrient-poor environments for maximizing survival

    Systematic analysis of the ability of Nitric Oxide donors to dislodge biofilms formed by Salmonella enterica and Escherichia coli O157:H7

    Get PDF
    Biofilms in the industrial environment could be problematic. Encased in extracellular polymeric substances, pathogens within biofilms are significantly more resistant to chlorine and other disinfectants. Recent studies suggest that compounds capable of manipulating nitric oxide-mediated signaling in bacteria could induce dispersal of sessile bacteria and provide a foundation for novel approaches to controlling biofilms formed by some microorganisms. In this work, we compared the ability of five nitric oxide donors (molsidomine, MAHMA NONOate, diethylamine NONOate, diethylamine NONOate diethylammonium salt, spermine NONOate) to dislodge biofilms formed by non-typhoidal Salmonella enterica and pathogenic E. coli on plastic and stainless steel surfaces at different temperatures. All five nitric oxide donors induced significant (35-80%) dispersal of biofilms, however, the degree of dispersal and the optimal dispersal conditions varied. MAHMA NONOate and molsidomine were strong dispersants of the Salmonella biofilms formed on polystyrene. Importantly, molsidomine induced dispersal of up to 50% of the pre-formed Salmonella biofilm at 4 degrees C, suggesting that it could be effective even under refrigerated conditions. Biofilms formed by E. coli O157:H7 were also significantly dispersed. Nitric oxide donor molecules were highly active within 6 hours of application. To better understand mode of action of these compounds, we identified Salmonella genomic region recA-hydN, deletion of which led to an insensitivity to the nitric oxide donors

    Horizontally acquired glycosyltransferase operons drive salmonellae lipopolysaccharide diversity.

    Get PDF
    The immunodominant lipopolysaccharide is a key antigenic factor for Gram-negative pathogens such as salmonellae where it plays key roles in host adaptation, virulence, immune evasion, and persistence. Variation in the lipopolysaccharide is also the major differentiating factor that is used to classify Salmonella into over 2600 serovars as part of the Kaufmann-White scheme. While lipopolysaccharide diversity is generally associated with sequence variation in the lipopolysaccharide biosynthesis operon, extraneous genetic factors such as those encoded by the glucosyltransferase (gtr) operons provide further structural heterogeneity by adding additional sugars onto the O-antigen component of the lipopolysaccharide. Here we identify and examine the O-antigen modifying glucosyltransferase genes from the genomes of Salmonella enterica and Salmonella bongori serovars. We show that Salmonella generally carries between 1 and 4 gtr operons that we have classified into 10 families on the basis of gtrC sequence with apparent O-antigen modification detected for five of these families. The gtr operons localize to bacteriophage-associated genomic regions and exhibit a dynamic evolutionary history driven by recombination and gene shuffling events leading to new gene combinations. Furthermore, evidence of Dam- and OxyR-dependent phase variation of gtr gene expression was identified within eight gtr families. Thus, as O-antigen modification generates significant intra- and inter-strain phenotypic diversity, gtr-mediated modification is fundamental in assessing Salmonella strain variability. This will inform appropriate vaccine and diagnostic approaches, in addition to contributing to our understanding of host-pathogen interactions

    Compensatory Evolution of Gene Regulation in Response to Stress by Escherichia coli Lacking RpoS

    Get PDF
    The RpoS sigma factor protein of Escherichia coli RNA polymerase is the master transcriptional regulator of physiological responses to a variety of stresses. This stress response comes at the expense of scavenging for scarce resources, causing a trade-off between stress tolerance and nutrient acquisition. This trade-off favors non-functional rpoS alleles in nutrient-poor environments. We used experimental evolution to explore how natural selection modifies the regulatory network of strains lacking RpoS when they evolve in an osmotically stressful environment. We found that strains lacking RpoS adapt less variably, in terms of both fitness increase and changes in patterns of transcription, than strains with functional RpoS. This phenotypic uniformity was caused by the same adaptive mutation in every independent population: the insertion of IS10 into the promoter of the otsBA operon. OtsA and OtsB are required to synthesize the osmoprotectant trehalose, and transcription of otsBA requires RpoS in the wild-type genetic background. The evolved IS10 insertion rewires expression of otsBA from RpoS-dependent to RpoS-independent, allowing for partial restoration of wild-type response to osmotic stress. Our results show that the regulatory networks of bacteria can evolve new structures in ways that are both rapid and repeatable
    corecore