769 research outputs found

    Mutational analysis of fructose-1,6-bisphosphate aldolase of Neisseria meningitidis serogroup B

    Get PDF
    Fructose-1,6-bisphosphate aldolase (FBA) is a classical cytoplasmic glycolytic enzyme which, despite lacking a predicted signal peptide, has been demonstrated to be expressed and transported to the surface of numerous Gram-positive bacteria and shown to interact with host molecules and perform non-glycolytic biological functions. Genome-based studies have also demonstrated that the glycolytic pathway appears to be non-functional in the meningococcus due to absence of phosphofructokinase, one of the important enzymes in this pathway. This study aimed to investigate whether the FBA, a so-called housekeeping enzyme, is required for maximal in vitro growth of N. meningitidis. An FBA knock-out mutant was created in N. meningitidis using an inverse polymerase chain reaction (PCR) and allelic exchange methodology. Phenotypic analysis of FBA-deficient mutant strains such as growth profiling experiments showed that the FBA-deficient mutant grew at the same rate (in broth culture and on solid media) as the wild-type strain, suggesting that FBA is not required for optimal growth of N. meningitidis under the in vitro conditions tested. No differences in either colony or bacterial cell morphology (using light microscopy) were observed. In summary, despite being a central enzyme in the glycolytic cycle, FBA is not required for in vitro growth of N. meningitidis.Key words: Neisseria meningitidis, aldolase, mutagenesis, growth kinetics, glycolytic cycle

    The role of glyceraldehyde 3-phosphate dehydrogenase (GapA-1) in Neisseria meningitidis adherence to human cells

    Get PDF
    BackgroundGlyceraldehyde 3-phosphate dehydrogenases (GAPDHs) are cytoplasmic glycolytic enzymes, which although lacking identifiable secretion signals, have also been found localized to the surface of several bacteria (and some eukaryotic organisms); where in some cases they have been shown to contribute to the colonization and invasion of host tissues. Neisseria meningitidis is an obligate human nasopharyngeal commensal which can cause life-threatening infections including septicaemia and meningitis. N. meningitidis has two genes, gapA-1 and gapA-2, encoding GAPDH enzymes. GapA-1 has previously been shown to be up-regulated on bacterial contact with host epithelial cells and is accessible to antibodies on the surface of capsule-permeabilized meningococcal cells. The aims of this study were: 1) to determine whether GapA-1 was expressed across different strains of N. meningitidis; 2) to determine whether GapA-1 surface accessibility to antibodies was dependant on the presence of capsule; 3) to determine whether GapA-1 can influence the interaction of meningococci and host cells, particularly in the key stages of adhesion and invasion.ResultsIn this study, expression of GapA-1 was shown to be well conserved across diverse isolates of Neisseria species. Flow cytometry confirmed that GapA-1 could be detected on the cell surface, but only in a siaD-knockout (capsule-deficient) background, suggesting that GapA-1 is inaccessible to antibody in in vitro-grown encapsulated meningococci. The role of GapA-1 in meningococcal pathogenesis was addressed by mutational analysis and functional complementation. Loss of GapA-1 did not affect the growth of the bacterium in vitro. However, a GapA-1 deficient mutant showed a significant reduction in adhesion to human epithelial and endothelial cells compared to the wild-type and complemented mutant. A similar reduction in adhesion levels was also apparent between a siaD-deficient meningococcal strain and an isogenic siaD gapA-1 double mutant.ConclusionsOur data demonstrates that meningococcal GapA-1 is a constitutively-expressed, highly-conserved surface-exposed protein which is antibody-accessible only in the absence of capsule. Mutation of GapA-1 does not affect the in vitro growth rate of N. meningitidis, but significantly affects the ability of the organism to adhere to human epithelial and endothelial cells in a capsule-independent process suggesting a role in the pathogenesis of meningococcal infection

    Ultrafine carbon particles down-regulate CYP1B1 expression in human monocytes

    Get PDF
    Cytochrome P450 monoxygenases play an important role in the defence against inhaled toxic compounds and in metabolizing a wide range of xenobiotics and environmental contaminants. In ambient aerosol the ultrafine particle fraction which penetrates deeply into the lungs is considered to be a major factor for adverse health effects. The cells mainly affected by inhaled particles are lung epithelial cells and cells of the monocyte/macrophage lineage. RESULTS: In this study we have analyzed the effect of a mixture of fine TiO2 and ultrafine carbon black Printex 90 particles (P90) on the expression of cytochrome P450 1B1 (CYP1B1) in human monocytes, macrophages, bronchial epithelial cells and epithelial cell lines. CYP1B1 expression is strongly down-regulated by P90 in monocytes with a maximum after P90 treatment for 3 h while fine and ultrafine TiO2 had no effect. CYP1B1 was down-regulated up to 130-fold and in addition CYP1A1 mRNA was decreased 13-fold. In vitro generated monocyte-derived macrophages (MDM), epithelial cell lines, and primary bronchial epithelial cells also showed reduced CYP1B1 mRNA levels. Benzo[a]pyrene (BaP) is inducing CYB1B1 but ultrafine P90 can still down-regulate gene expression at 0.1 muM of BaP. The P90-induced reduction of CYP1B1 was also demonstrated at the protein level using Western blot analysis. CONCLUSION: These data suggest that the P90-induced reduction of CYP gene expression may interfere with the activation and/or detoxification capabilities of inhaled toxic compounds

    K-Bayes Reconstruction for Perfusion MRI II: Modeling and Technical Development

    Get PDF
    Despite the continued spread of magnetic resonance imaging (MRI) methods in scientific studies and clinical diagnosis, MRI applications are mostly restricted to high-resolution modalities such as structural MRI. While perfusion MRI gives complementary information on blood flow in the brain, its reduced resolution limits its power for detecting specific disease effects on perfusion patterns. This reduced resolution is compounded by artifacts such as partial volume effects, Gibbs ringing, and aliasing, which are caused by necessarily limited k-space sampling and the subsequent use of discrete Fourier transform (DFT) reconstruction. Here, a Bayesian modeling procedure (K-Bayes) is developed for the reconstruction of perfusion MRI. The K-Bayes approach combines a process model for the MRI signal in k-space with a Markov random field prior distribution that incorporates high-resolution segmented structural MRI information. A simulation study, described in Part I (Concepts and Applications), was performed to determine qualitative and quantitative improvements in K-Bayes reconstructed images compared with those obtained via DFT. The improvements were validated using in vivo perfusion MRI data of the human brain. The K-Bayes reconstructed images were demonstrated to provide reduced bias, increased precision, greater effect sizes, and higher resolution than those obtained using DFT

    Game theory of mind

    Get PDF
    This paper introduces a model of ‘theory of mind’, namely, how we represent the intentions and goals of others to optimise our mutual interactions. We draw on ideas from optimum control and game theory to provide a ‘game theory of mind’. First, we consider the representations of goals in terms of value functions that are prescribed by utility or rewards. Critically, the joint value functions and ensuing behaviour are optimised recursively, under the assumption that I represent your value function, your representation of mine, your representation of my representation of yours, and so on ad infinitum. However, if we assume that the degree of recursion is bounded, then players need to estimate the opponent's degree of recursion (i.e., sophistication) to respond optimally. This induces a problem of inferring the opponent's sophistication, given behavioural exchanges. We show it is possible to deduce whether players make inferences about each other and quantify their sophistication on the basis of choices in sequential games. This rests on comparing generative models of choices with, and without, inference. Model comparison is demonstrated using simulated and real data from a ‘stag-hunt’. Finally, we note that exactly the same sophisticated behaviour can be achieved by optimising the utility function itself (through prosocial utility), producing unsophisticated but apparently altruistic agents. This may be relevant ethologically in hierarchal game theory and coevolution

    A massive, quiescent galaxy at redshift of z=3.717

    Get PDF
    In the early Universe finding massive galaxies that have stopped forming stars present an observational challenge as their rest-frame ultraviolet emission is negligible and they can only be reliably identified by extremely deep near-infrared surveys. These have revealed the presence of massive, quiescent early-type galaxies appearing in the universe as early as z\sim2, an epoch 3 Gyr after the Big Bang. Their age and formation processes have now been explained by an improved generation of galaxy formation models where they form rapidly at z\sim3-4, consistent with the typical masses and ages derived from their observations. Deeper surveys have now reported evidence for populations of massive, quiescent galaxies at even higher redshifts and earlier times, however the evidence for their existence, and redshift, has relied entirely on coarsely sampled photometry. These early massive, quiescent galaxies are not predicted by the latest generation of theoretical models. Here, we report the spectroscopic confirmation of one of these galaxies at redshift z=3.717 with a stellar mass of 1.7×\times1011^{11} M_\odot whose absorption line spectrum shows no current star-formation and which has a derived age of nearly half the age of the Universe at this redshift. The observations demonstrates that the galaxy must have quickly formed the majority of its stars within the first billion years of cosmic history in an extreme and short starburst. This ancestral event is similar to those starting to be found by sub-mm wavelength surveys pointing to a possible connection between these two populations. Early formation of such massive systems is likely to require significant revisions to our picture of early galaxy assembly.Comment: 6 pages, 7 figures. This is the final preprint corresponding closely to the published version. Uploaded 6 months after publication in accordance with Nature polic

    Genome-Wide Studies of Histone Demethylation Catalysed by the Fission Yeast Homologues of Mammalian LSD1

    Get PDF
    In order to gain a more global view of the activity of histone demethylases, we report here genome-wide studies of the fission yeast SWIRM and polyamine oxidase (PAO) domain homologues of mammalian LSD1. Consistent with previous work we find that the two S. pombe proteins, which we name Swm1 and Swm2 (after SWIRM1 and SWIRM2), associate together in a complex. However, we find that this complex specifically demethylates lysine 9 in histone H3 (H3K9) and both up- and down-regulates expression of different groups of genes. Using chromatin-immunoprecipitation, to isolate fragments of chromatin containing either H3K4me2 or H3K9me2, and DNA microarray analysis (ChIP-chip), we have studied genome-wide changes in patterns of histone methylation, and their correlation with gene expression, upon deletion of the swm1+ gene. Using hyper-geometric probability comparisons we uncover genetic links between lysine-specific demethylases, the histone deacetylase Clr6, and the chromatin remodeller Hrp1. The data presented here demonstrate that in fission yeast the SWIRM/PAO domain proteins Swm1 and Swm2 are associated in complexes that can remove methyl groups from lysine 9 methylated histone H3. In vitro, we show that bacterially expressed Swm1 also possesses lysine 9 demethylase activity. In vivo, loss of Swm1 increases the global levels of both H3K9me2 and H3K4me2. A significant accumulation of H3K4me2 is observed at genes that are up-regulated in a swm1 deletion strain. In addition, H3K9me2 accumulates at some genes known to be direct Swm1/2 targets that are down-regulated in the swm1¿ strain. The in vivo data indicate that Swm1 acts in concert with the HDAC Clr6 and the chromatin remodeller Hrp1 to repress gene expression. In addition, our in vitro analyses suggest that the H3K9 demethylase activity requires an unidentified post-translational modification to allow it to act. Thus, our results highlight complex interactions between histone demethylase, deacetylase and chromatin remodelling activities in the regulation of gene expression
    corecore