38 research outputs found

    Impacts of emission reductions on aerosol radiative effects

    Get PDF
    The global aerosol-climate model ECHAM-HAMMOZ was used to investigate changes in the aerosol burden and aerosol radiative effects in the coming decades. Four different emissions scenarios were applied for 2030 (two of them applied also for 2020) and the results were compared against the reference year 2005. Two of the scenarios are based on current legislation reductions: one shows the maximum potential of reductions that can be achieved by technical measures, and the other is targeted to short-lived climate forcers (SLCFs). We have analyzed the results in terms of global means and additionally focused on eight subregions. Based on our results, aerosol burdens show an overall decreasing trend as they basically follow the changes in primary and precursor emissions. However, in some locations, such as India, the burdens could increase significantly. The declining emissions have an impact on the clear-sky direct aerosol effect (DRE), i.e. the cooling effect. The DRE could decrease globally 0.06-0.4 W m(-2) by 2030 with some regional increases, for example, over India (up to 0.84 W m(-2)). The global changes in the DRE depend on the scenario and are smallest in the targeted SLCF simulation. The aerosol indirect radiative effect could decline 0.25-0.82 W m(-2) by 2030. This decrease takes place mostly over the oceans, whereas the DRE changes are greatest over the continents. Our results show that targeted emission reduction measures can be a much better choice for the climate than overall high reductions globally. Our simulations also suggest that more than half of the near-future forcing change is due to the radiative effects associated with aerosol-cloud interactions.Peer reviewe

    Psychotropic drugs and the risk of fractures in old age: a prospective population-based study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is evidence that the use of any psychotropic and the concomitant use of two or more benzodiazepines are related to an increased risk of fractures in old age. However, also controversial results exist. The aim was to describe associations between the use of a psychotropic drug, or the concomitant use of two or more of these drugs and the risk of fractures in a population aged 65 years or over.</p> <p>Methods</p> <p>This study was a part of a prospective longitudinal population-based study carried out in the municipality of Lieto, South-Western Finland. The objective was to describe gender-specific associations between the use of one psychotropic drug [benzodiazepine (BZD), antipsychotic (AP) or antidepressant (AD)] or the concomitant use of two or more psychotropic drugs and the risk of fractures in a population 65 years or over. Subjects were participants in the first wave of the Lieto study in 1990-1991, and they were followed up until the end of 1996. Information about fractures confirmed with radiology reports in 1,177 subjects (482 men and 695 women) during the follow-up was collected from medical records. Two follow-up periods (three and six years) were used, and previously found risk factors of fractures were adjusted as confounding factors separately for men and women. The Poisson regression model was used in the analyses.</p> <p>Results</p> <p>The concomitant use of two or more BZDs and the concomitant use of two or more APs were related to an increased risk of fractures during both follow-up periods after adjusting for confounding factors in men. No similar associations were found in women.</p> <p>Conclusions</p> <p>The concomitant use of several BZDs and that of several APs are associated with an increase in the risk of fractures in older men. Our findings show only risk relations. We cannot draw the conclusion that these drug combinations are causes of fractures.</p

    Non-pharmacological management of osteoporosis: a consensus of the Belgian Bone Club

    Get PDF
    This consensus article reviews the various aspects of the non-pharmacological management of osteoporosis, including the effects of nutriments, physical exercise, lifestyle, fall prevention, and hip protectors. Vertebroplasty is also briefly reviewed. Non-pharmacological management of osteoporosis is a broad concept. It must be viewed as an essential part of the prevention of fractures from childhood through adulthood and the old age. The topic also includes surgical procedures for the treatment of peripheral and vertebral fractures and the post-fracture rehabilitation. The present document is the result of a consensus, based on a systematic review and a critical appraisal of the literature. Diets deficient in calcium, proteins or vitamin D impair skeletal integrity. The effect of other nutriments is less clear, although an excessive consumption of sodium, caffeine, or fibres exerts negative effects on calcium balance. The deleterious effects of tobacco, excessive alcohol consumption and a low BMI are well accepted. Physical activity is of primary importance to reach optimal peak bone mass but, if numerous studies have shown the beneficial effects of various types of exercise on bone mass, fracture data as an endpoint are scanty. Fall prevention strategies are especially efficient in the community setting, but less evidence is available about their effectiveness in preventing fall-related injuries and fractures. The efficacy of hip protectors remains controversial. This is also true for vertebroplasty and kyphoplasty. Several randomized controlled studies had reported a short-term advantage of vertebroplasty over medical treatment for pain relief, but these findings have been questioned by recent sham-controlled randomized clinical studies

    The influence of muscular action on bone strength via exercise

    Get PDF
    Mechanical stimuli influence bone strength, with internal muscular forces thought to be the greatest stressors of bone. Consequently, the effects of exercise in improving and maintaining bone strength have been explored in a number of interventional studies. These studies demonstrate a positive effect of high-impact activities (i.e. where large muscle forces are produced) on bone strength, with benefits being most pronounced in interventions in early pubertal children. However, current studies have not investigated the forces acting on bones and subsequent deformation, preventing the development of optimised and targeted exercise interventions. Similarly, the effects of number and frequency of exercise repetitions and training sessions on bone accrual are unexplored. There are conflicting results as to gender effects on bone response to exercise, and the effects of age and starting age on the osteogenic effects of exercise are not well known. It also appears that exercise interventions are most effective in physically inactive people or counteracting conditions of disuse such as bed rest. Bone strength is only one component of fracture risk, and it may be that exercise resulting in improvements in, e.g., muscle force/power and/or balance is more effective than those whose effects are solely osteogenic. In summary, exercise is likely to be an effective tool in maintaining bone strength but current interventions are far from optimal. © Springer Science+Business Media 2013

    Counselling for physical activity, life-space mobility and falls prevention in old age (COSMOS) : protocol of a randomised controlled trial

    Get PDF
    Introduction: The most promising way to promote active life years in old age is to promote regular participation in physical activity (PA). Maintaining lower extremity muscle function with good balance has been associated with fewer falls and the need of help from others. This article describes the design and intervention of a randomised controlled trial (RCT) investigating the effectiveness of a health and PA counselling programme on life-space mobility and falls rates in community-dwelling older adults at the Health Kiosk and/or Service Centre. Methods and analysis: Community-dwelling men and women (n=450) aged 65 years and over with early phase mobility limitation will be recruited to a 24-month RCT with a 24-month follow-up. Participants will be randomly allocated into either a health and PA counselling group (intervention) or relaxation group (control intervention). All participants will receive five group specific face-to-face counselling sessions and 11 phone calls. The counselling intervention will include individualised health counselling, strength and balance training, and guidance to regular PA. The control group will receive relaxation exercises. Outcomes will be assessed at baseline, 12, 24 and 48 months. Primary outcomes are average life-space mobility score and falls rates. Life-space mobility will be assessed by a validated questionnaire. Falls rates will be recorded from fall diaries. Secondary outcomes are data on fall-induced injuries and living arrangements, number of fallers, fracture risk, mean level of PA, physical performance, quality of life, mood, cognition, balance confidence and fear of falling. Data will be analysed using the intention-to-treat principle. Cost-effectiveness of the programme will be analysed. Ancillary analyses are planned in participants with greater adherence.peerReviewe
    corecore