13 research outputs found

    Polysaccharides Cell Wall Architecture of Mucorales

    Get PDF
    Invasive fungal infections are some of the most life-threatening infectious diseases in the hospital setting. In industrialized countries, the most common fungal species isolated from immunocompromised patients are Candida and Aspergillus spp. However, the number of infections due to Mucorales spp. is constantly increasing and little is known about the virulence factors of these fungi. The fungal cell wall is an important structure protecting fungi from the environment. A better knowledge of its composition should improve our understanding of host-pathogen interactions. Cell wall molecules are involved in tissue adherence, immune escape strategies, and stimulation of host defenses including phagocytosis and mediators of humoral immunity. The fungal cell wall is also a target of choice for the development of diagnostic or therapeutic tools. The present review discusses our current knowledge on the cell wall structure of Mucorales in terms of the polysaccharides and glyco-enzymes involved in its biosynthesis and degradation, with an emphasis on the missing gaps in our knowledge

    Molecular basis for intestinal mucin recognition by galectin-3 and C-type lectins

    Get PDF
    Intestinal mucins trigger immune responses upon recognition by dendritic cells via protein–carbohydrate interactions. We used a combination of structural, biochemical, biophysical, and cell-based approaches to decipher the specificity of the interaction between mucin glycans and mammalian lectins expressed in the gut, including galectin (Gal)-3 and C-type lectin receptors. Gal-3 differentially recognized intestinal mucins with different O-glycosylation profiles, as determined by mass spectrometry (MS). Modification of mucin glycosylation, via chemical treatment leading to a loss of terminal glycans, promoted the interaction of Gal-3 to poly-N-acetyllactosamine. Specific interactions were observed between mucins and mouse dendritic cell-associated lectin (mDectin)-2 or specific intercellular adhesion molecule–grabbing nonintegrin-related-1 (SIGN-R1), but not mDectin-1, using a cell-reporter assay, as also confirmed by atomic force spectroscopy. We characterized the N-glycosylation profile of mouse colonic mucin (Muc)-2 by MS and showed that the interaction with mDectin-2 was mediated by high-mannose N-glycans. Furthermore, we observed Gal-3 binding to the 3 C-type lectins by force spectroscopy. We showed that mDectin-1, mDectin-2, and SIGN-R1 are decorated by N-glycan structures that can be recognized by the carbohydrate recognition domain of Gal-3. These findings provide a structural basis for the role of mucins in mediating immune responses and new insights into the structure and function of major mammalian lectins.—Leclaire, C., Lecointe, K., Gunning, P. A., Tribolo, S., Kavanaugh, D. W., Wittmann, A., Latousakis, D., MacKenzie, D. A., Kawasaki, N., Juge, N. Molecular basis for intestinal mucin recognition by galectin-3 and C-type lectins

    Lysosomal di-N-acetylchitobiase-deficient mouse tissues accumulate Man2GlcNAc2 and Man3GlcNAc2

    Get PDF
    AbstractMost lysosomal storage diseases are caused by defects in genes encoding for acidic hydrolases. Deficiency of an enzyme involved in the catabolic pathway of N-linked glycans leads to the accumulation of the respective substrate and consequently to the onset of a specific storage disorder. Di-N-acetylchitobiase and core specific α1–6mannosidase represent the only exception. In fact, to date no lysosomal disease has been correlated to the deficiency of these enzymes. We generated di-N-acetylchitobiase-deficient mice by gene targeting of the Ctbs gene in murine embryonic stem cells. Accumulation of Man2GlcNAc2 and Man3GlcNAc2 was evaluated in all analyzed tissues and the tetrasaccharide was detected in urines. Multilamellar inclusion bodies reminiscent of polar lipids were present in epithelia of a scattered subset of proximal tubules in the kidney. Less constantly, enlarged Kupffer cells were observed in liver, filled with phagocytic material resembling partly digested red blood cells. These findings confirm an important role for lysosomal di-N-acetylchitobiase in glycans degradation and suggest that its deficiency could be the cause of a not yet described lysosomal storage disease

    Unravelling the specificity and mechanism of sialic acid recognition by the gut symbiont Ruminococcus gnavus

    Get PDF
    Ruminococcus gnavus is a human gut symbiont which ability to degrade mucins is mediated by an intramolecular trans-sialidase (RgNanH). RgNanH comprises a GH33 catalytic domain and a sialic acid binding carbohydrate binding module (CBM40). Here we used glycan arrays, STD NMR, X-ray crystallography, mutagenesis, and binding assays to determine the structure and function of RgNanH_CBM40 (RgCBM40). RgCBM40 displays the canonical CBM40 b-sandwich fold and broad specificity towards sialoglycans with millimolar binding affinity towards α2,3- or α2,6-sialyllactose. RgCBM40 binds to mucus produced by goblet cells and to purified mucins, providing direct evidence for a CBM40 as a novel bacterial mucus adhesin. Bioinformatics data show that RgCBM40 canonical type domains are widespread among Firmicutes. Furthermore, binding of R. gnavus ATCC 29149 to intestinal mucus is sialic acid mediated. Together, this study reveals novel features of CBMs which may contribute to the biogeography of symbiotic bacteria in the gut

    Host-Pathogen relationships in respiratory diseases and characterization of Aspergillus fumigatus cell wall modifications during germination

    No full text
    Chaque jour, nous inhalons des organismes pathogĂšnes ou non tels que des bactĂ©ries ou des champignons. Chez l’individu sain, l’infection est Ă©vitĂ©e grĂące Ă  l’action conjuguĂ©e du mucus pulmonaire sĂ©crĂ©tĂ© qui empĂȘche la colonisation des pathogĂšnes et par le battement des cils de l’épithĂ©lium pulmonaire permettant ainsi la clairance des poumons. Si cette barriĂšre ne suffit pas, les cellules du systĂšme immunitaire entrent alors en jeu et vont reconnaĂźtre les pathogĂšnes via une famille de rĂ©cepteurs particuliers, les PRR. Chez les personnes immunodĂ©primĂ©es ou atteintes de mucoviscidose, ces mĂ©canismes ne sont plus fonctionnels favorisant le dĂ©veloppement de pathogĂšnes tels que Pseudomonas aeruginosa ou Aspergillus fumigatus. Afin de mieux comprendre la pathogĂ©nĂšse des infections pulmonaires, mon travail de thĂšse a consistĂ© d’une part Ă  caractĂ©riser la paroi d’A. fumigatus au cours de la germination des conidies et d’autre part Ă  identifier les motifs glycanniques portĂ©s par les mucines et reconnus par les pathogĂšnes. Nous avons purifiĂ© les mucines pulmonaires de patients atteints de mucoviscidose et caractĂ©risĂ© leurs profils de glycosylation. Nous avons pu dĂ©montrer de trĂšs fortes variations inter-individuelles avec pour certains patients la prĂ©sence de mucines essentiellement neutres alors que pour d’autres les mucines Ă©taient presque exclusivement acides. nous avons pu dĂ©montrĂ© que P. aeruginosa adhĂšre prĂ©fĂ©rentiellement sur les structures sialylĂ©es et sulfatĂ©es. Nous avons Ă©galement montrĂ© qu’A. fumigatus adhĂ©rait aux mucines pulmonaires humaines et de porc. Ce travail devrait permettre Ă  terme d’identifier de nouvelles molĂ©cules permettant d’inhiber l’adhĂ©sion de pathogĂšne.Daily, we inhale pathogenic or not pathogenic bacteria and fungi organisms. In healthy individuals, infection is prevented by the combined action of secreted pulmonary mucus which avoids colonization of pathogens and the beating of cilia of pulmonary mucosal epithelium allowing clearance of the lungs. If the first barrier effect is not sufficient, immune cells will recognize pathogens by the pathogen recognition receptors (PRR) family. In immunocompromised people or cystic fibrosis patients, these mechanisms are no longer functional promoting the development of pathogens such as Pseudomonas aeruginosa or Aspergillus fumigatus. In order to better understand pathogenesis of pulmonary infection, my PhD work was focused on the characterization of A. fumigatus wall during conidial germination and on the identification of oligosaccharidic ligands carried by mucins and recognized by pathogens. We have purified respiratory mucins from patients with cystic fibrosis and analyzed their glycosylation profile. We have demonstrated profund inter-individual variation with for some patients mainly neutral mucins whereas for others, mucins were essentially acidic. We were able to demonstrate that P. aeruginosa preferentially adheres on sulfated and sialylated structures. We also showed that A. fumigatus is able to bind to human and pig lung mucins. This work paves the way for the development of alternative strategies against pathogens infection, using adherence inhibitors

    Antibodies as Models and Tools to Decipher <i>Candida albicans</i> Pathogenic Development: Review about a Unique Monoclonal Antibody Reacting with Immunomodulatory Adhesins

    No full text
    Candidiasis, caused mainly by Candida albicans, a natural commensal of the human digestive tract and vagina, is the most common opportunistic fungal infection at the mucosal and systemic levels. Its high morbi–mortality rates have led to considerable research to identify the molecular mechanisms associated with the switch to pathogenic development and to diagnose this process as accurately as possible. Since the 1980s, the advent of monoclonal antibody (mAb) technology has led to significant progress in both interrelated fields. This linear review, intended to be didactic, was prompted by considering how, over several decades, a single mAb designated 5B2 contributed to the elucidation of the molecular mechanisms of pathogenesis based on ÎČ-1,2-linked oligomannoside expression in Candida species. These contributions starting from the structural identification of the minimal epitope as a di-mannoside from the ÎČ-1,2 series consisted then in the demonstration that it was shared by a large number of cell wall proteins differently anchored in the cell wall and the discovery of a cell wall glycoplipid shed by the yeast in contact of host cells, the phospholipomannan. Cytological analysis revealed an overall highly complex epitope expression at the cell surface concerning all growth phases and a patchy distribution resulting from the merging of cytoplasmic vesicles to plasmalema and further secretion through cell wall channels. On the host side, the mAb 5B2 led to identification of Galectin-3 as the human receptor dedicated to ÎČ-mannosides and signal transduction pathways leading to cytokine secretion directing host immune responses. Clinical applications concerned in vivo imaging of Candida infectious foci, direct examination of clinical samples and detection of circulating serum antigens that complement the Platelia Ag test for an increased sensitivity of diagnosis. Finally, the most interesting character of mAb 5B2 is probably its ability to reveal C. albicans pathogenic behaviour in reacting specifically with vaginal secretions from women infected versus colonized by this species as well as to display higher reactivity with strains isolated in pathogenic circumstances or even linked to an unfavourable prognosis for systemic candidiasis. Together with a detailed referenced description of these studies, the review provides a complementary reading frame by listing the wide range of technologies involving mAb 5B2 over time, evidencing a practical robustness and versatility unique so far in the Candida field. Finally, the basic and clinical perspectives opened up by these studies are briefly discussed with regard to prospects for future applications of mAb 5B2 in current research challenges

    A Small Aromatic Compound Has Antifungal Properties and Potential Anti-Inflammatory Effects against Intestinal Inflammation

    No full text
    Resistance of the opportunistic pathogen Candida albicans to antifungal drugs has increased significantly in recent years. After screening 55 potential antifungal compounds from a chemical library, 2,3-dihydroxy-4-methoxybenzaldehyde (DHMB) was identified as having potential antifungal activity. The properties of DHMB were then assessed in vitro and in vivo against C. albicans overgrowth and intestinal inflammation. Substitution on the aromatic ring of DHMB led to a strong decrease in its biological activity against C. albicans. The MIC of DHMB was highly effective at eliminating C. albicans when compared to that of caspofungin or fluconazole. Additionally, DHMB was also effective against clinically isolated fluconazole- or caspofungin-resistant C. albicans strains. DHMB was administered to animals at high doses. This compound was not cytotoxic and was well-tolerated. In experimental dextran sodium sulphate (DSS)-induced colitis in mice, DHMB reduced the clinical and histological score of inflammation and promoted the elimination of C. albicans from the gut. This finding was supported by a decrease in aerobic bacteria while anaerobic bacteria populations were re-established in mice treated with DHMB. DHMB is a small organic molecule with antifungal properties and anti-inflammatory activity by exerting protective effects on intestinal epithelial cells

    Dissection of the anti-Candida albicans mannan immune response using synthetic oligomannosides reveals unique properties of ÎČ-1,2 mannotriose protective epitopes

    No full text
    International audienceCandida albicans mannan consists of a large repertoire of oligomannosides with different types of mannose linkages and chain lengths, which act as individual epitopes with more or less overlapping antibody specificities. Although anti-C. albicans mannan antibody levels are monitored for diagnostic purposes nothing is known about the qualitative distribution of these antibodies in terms of epitope specificity. We addressed this question using a bank of previously synthesized biotin sulfone tagged oligomannosides (BSTOs) of α and ÎČ anomery complemented with a synthetic ÎČ-mannotriose described as a protective epitope. The reactivity of these BSTOs was analyzed with IgM isotype monoclonal antibodies (MAbs) of known specificity, polyclonal sera from patients colonized or infected with C. albicans, and mannose binding lectin (MBL). Surface plasmon resonance (SPR) and multiple analyte profiling (MAP) were used. Both methods confirmed the usual reactivity of MAbs against either α or ÎČ linkages, excepted for MAb B6.1 (protective epitope) reacting with ÎČ-Man whereas the corresponding BSTO reacted with anti-α-Man. These results were confirmed in western blots with native C. albicans antigens. Using patients' sera in MAP, a significant correlation was observed between the detection of anti-mannan antibodies recognizing ÎČ-and α-Man epitopes and detection of antibodies against ÎČ-linked mannotriose suggesting that this epitope also reacts with human polyclonal antibodies of both specificities. By contrast, the reactivity of human sera with other α-and ÎČ-linked BSTOs clearly differed according to their colonized or infected status. In these cases, the establishment of an α/ÎČ ratio was extremely discriminant. Finally SPR with MBL, an important lectin of innate immunity to C. albicans, classically known to interact with α-mannose, also interacted in an unexpected way with the protective epitope. These cumulative data suggest that structure/ activity investigations of the finely tuned C. albicans anti-mannose immune response are worthwhile to increase our basic knowledge and for translation in medicine

    Unravelling the specificity and mechanism of sialic acid recognition by the gut symbiont <i>Ruminococcus gnavus</i>

    No full text
    Ruminococcus gnavus is a human gut symbiont wherein the ability to degrade mucins is mediated by an intramolecular trans-sialidase (RgNanH). RgNanH comprises a GH33 catalytic domain and a sialic acid-binding carbohydrate-binding module (CBM40). Here we used glycan arrays, STD NMR, X-ray crystallography, mutagenesis and binding assays to determine the structure and function of RgNanH_CBM40 (RgCBM40). RgCBM40 displays the canonical CBM40 ÎČ-sandwich fold and broad specificity towards sialoglycans with millimolar binding affinity towards α2,3- or α2,6-sialyllactose. RgCBM40 binds to mucus produced by goblet cells and to purified mucins, providing direct evidence for a CBM40 as a novel bacterial mucus adhesin. Bioinformatics data show that RgCBM40 canonical type domains are widespread among Firmicutes. Furthermore, binding of R. gnavus ATCC 29149 to intestinal mucus is sialic acid mediated. Together, this study reveals novel features of CBMs which may contribute to the biogeography of symbiotic bacteria in the gut.</p
    corecore