19 research outputs found

    Gene doctoring: a method for recombineering in laboratory and pathogenic Escherichia coli strains

    Get PDF
    Background: Homologous recombination mediated by the lambda-Red genes is a common method for making chromosomal modifications in Escherichia coli. Several protocols have been developed that differ in the mechanisms by which DNA, carrying regions homologous to the chromosome, are delivered into the cell. A common technique is to electroporate linear DNA fragments into cells. Alternatively, DNA fragments are generated in vivo by digestion of a donor plasmid with a nuclease that does not cleave the host genome. In both cases the lambda-Red gene products recombine homologous regions carried on the linear DNA fragments with the chromosome. We have successfully used both techniques to generate chromosomal mutations in E. coli K-12 strains. However, we have had limited success with these lambda-Red based recombination techniques in pathogenic E. coli strains, which has led us to develop an enhanced protocol for recombineering in such strains. \ud \ud Results: Our goal was to develop a high-throughput recombineering system, primarily for the coupling of genes to epitope tags, which could also be used for deletion of genes in both pathogenic and K-12 E. coli strains. To that end we have designed a series of donor plasmids for use with the lambda-Red recombination system, which when cleaved in vivo by the I-SceI meganuclease generate a discrete linear DNA fragment, allowing for C-terminal tagging of chromosomal genes with a 6xHis, 3xFLAG, 4xProteinA or GFP tag or for the deletion of chromosomal regions. We have enhanced existing protocols and technologies by inclusion of a cassette conferring kanamycin resistance and, crucially, by including the sacB gene on the donor plasmid, so that all but true recombinants are counter-selected on kanamycin and sucrose containing media, thus eliminating the need for extensive screening. This method has the added advantage of limiting the exposure of cells to the potential damaging effects of the lambda-Red system, which can lead to unwanted secondary alterations to the chromosome. \ud \ud Conclusion: We have developed a counter-selective recombineering technique for epitope tagging or for deleting genes in E. coli. We have demonstrated the versatility of the technique by modifying the chromosome of the enterohaemorrhagic O157:H7 (EHEC), uropathogenic CFT073 (UPEC), enteroaggregative O42 (EAEC) and enterotoxigenic H10407 (ETEC) E. coli strains as well as in K-12 laboratory strains

    Quorum Sensing Signaling Molecules Produced by Reference and Emerging Soft-Rot Bacteria (Dickeya and Pectobacterium spp.)

    Get PDF
    International audienceBACKGROUND: Several small diffusible molecules are involved in bacterial quorum sensing and virulence. The production of autoinducers-1 and -2, quinolone, indole and γ-amino butyrate signaling molecules was investigated in a set of soft-rot bacteria belonging to six Dickeya or Pectobacterium species including recent or emerging potato isolates. METHODOLOGY/PRINCIPAL FINDINGS: Using bacterial biosensors, immunoassay, and chromatographic analysis, we showed that soft-rot bacteria have the common ability to produce transiently during their exponential phase of growth the N-3-oxo-hexanoyl- or the N-3-oxo-octanoyl-l-homoserine lactones and a molecule of the autoinducer-2 family. Dickeya spp. produced in addition the indole-3-acetic acid in tryptophan-rich conditions. All these signaling molecules have been identified for the first time in the novel Dickeya solani species. In contrast, quinolone and γ-amino butyrate signals were not identified and the corresponding synthases are not present in the available genomes of soft-rot bacteria. To determine if the variations of signal production according to growth phase could result from expression modifications of the corresponding synthase gene, the respective mRNA levels were estimated by reverse transcriptase-PCR. While the N-acyl-homoserine lactone production is systematically correlated to the synthase expression, that of the autoinducer-2 follows the expression of an enzyme upstream in the activated methyl cycle and providing its precursor, rather than the expression of its own synthase. CONCLUSIONS/SIGNIFICANCE: Despite sharing the S-adenosylmethionine precursor, no strong link was detected between the production kinetics or metabolic pathways of autoinducers-1 and -2. In contrast, the signaling pathway of autoinducer-2 seems to be switched off by the indole-3-acetic acid pathway under tryptophan control. It therefore appears that the two genera of soft-rot bacteria have similarities but also differences in the mechanisms of communication via the diffusible molecules. Our results designate autoinducer-1 lactones as the main targets for a global biocontrol of soft-rot bacteria communications, including those of emerging isolates

    Negative Control of Quorum Sensing by RpoN (σ(54)) in Pseudomonas aeruginosa PAO1

    No full text
    In Pseudomonas aeruginosa PAO1, the expression of several virulence factors such as elastase, rhamnolipids, and hydrogen cyanide depends on quorum-sensing regulation, which involves the lasRI and rhlRI systems controlled by N-(3-oxododecanoyl)-l-homoserine lactone and N-butyryl-l-homoserine lactone, respectively, as signal molecules. In rpoN mutants lacking the transcription factor σ(54), the expression of the lasR and lasI genes was elevated at low cell densities, whereas expression of the rhlR and rhlI genes was markedly enhanced throughout growth by comparison with the wild type and the complemented mutant strains. As a consequence, the rpoN mutants had elevated levels of both signal molecules and overexpressed the biosynthetic genes for elastase, rhamnolipids, and hydrogen cyanide. The quorum-sensing regulatory protein QscR was not involved in the negative control exerted by RpoN. By contrast, in an rpoN mutant, the expression of the gacA global regulatory gene was significantly increased during the entire growth cycle, whereas another global regulatory gene, vfr, was downregulated at high cell densities. In conclusion, it appears that GacA levels play an important role, probably indirectly, in the RpoN-dependent modulation of the quorum-sensing machinery of P. aeruginosa

    The Nitric Oxide (NO)-Sensing Repressor NsrR of Neisseria meningitidis Has a Compact Regulon of Genes Involved in NO Synthesis and Detoxification▿ †

    No full text
    We have analyzed the extent of regulation by the nitric oxide (NO)-sensitive repressor NsrR from Neisseria meningitidis MC58, using microarray analysis. Target genes that appeared to be regulated by NsrR, based on a comparison between an nsrR mutant and a wild-type strain, were further investigated by quantitative real-time PCR, revealing a very compact set of genes, as follows: norB (encoding NO reductase), dnrN (encoding a protein putatively involved in the repair of nitrosative damage to iron-sulfur clusters), aniA (encoding nitrite reductase), nirV (a putative nitrite reductase assembly protein), and mobA (a gene associated with molybdenum metabolism in other species but with a frame shift in N. meningitidis). In all cases, NsrR acts as a repressor. The NO protection systems norB and dnrN are regulated by NO in an NsrR-dependent manner, whereas the NO protection system cytochrome c′ (encoded by cycP) is not controlled by NO or NsrR, indicating that N. meningitidis expresses both constitutive and inducible NO protection systems. In addition, we present evidence to show that the anaerobic response regulator FNR is also sensitive to NO but less so than NsrR, resulting in complex regulation of promoters such as aniA, which is controlled by both FNR and NsrR: aniA was found to be maximally induced by intermediate NO concentrations, consistent with a regulatory system that allows expression during denitrification (in which NO accumulates) but is down-regulated as NO approaches toxic concentrations

    Making 'sense' of metabolism: autoinducer-2, LUXS and pathogenic bacteria.

    No full text
    Bacteria exploit many mechanisms to communicate with each other and their surroundings. Mechanisms using small diffusible signals to coordinate behaviour with cell density (quorum sensing) frequently contribute to pathogenicity. However, pathogens must also be able to acquire nutrients and replicate to successfully invade their host. One quorum-sensing system, based on the possession of LuxS, bears the unique feature of contributing directly to metabolism, and therefore has the potential to influence both gene regulation and bacterial fitness. Here, we discuss the influence that LuxS and its product, autoinducer-2, have on virulence, relating the current evidence to the preferred niche of the pathogen and the underlying mechanisms involved

    Laboratory kinetics of soil denitrification are useful to discriminate soils with potentially high levels of N2_2O emission on the field scale

    No full text
    Emissions of N2_2O, a greenhouse gas, were measured in field conditions on a Rendzic Leptosol, an Eutric Leptosol, a Haplic Calcisol, a Haplic Luvisol and two Gleyic Luvisols under cultivation, and on a Haplic Fluvisol and two Gleyic Cambisols under cultivation and grassland conditions. The kinetics of N2_2O production and consumption during denitrification in these soils were studied during anaerobic incubations in the laboratory, with NO3_3^- and N2_2O addition in the presence or absence of acetylene. The soils with the highest "in situ" levels of N2_2O emission, i.e. the Gleyic Luvisols under cultivation and the grassland soils, exhibited considerable transient accumulation of N2O during denitrification studied in the laboratory. We therefore propose an empirical indicator, measured in the laboratory, of the soil's potential to emit N2_2O on the field scale. Carbon addition to one of the Gleyic Luvisols promoted N2_2O reduction and limited the transient accumulation of N2_2O during laboratory denitrification.Des cinétiques de dénitrification effectuées au laboratoire permettent de discriminer les sols qui émettent des niveaux importants de N2_2O au champ. Les émissions de N2_2O, gaz à effet de serre, ont été mesurées au cours d'essais au champ, sur des sols cultivés dont un Rendzic Leptosol, un Eutric Leptosol, un Haplic Calcisol, un Haplic Luvisol et deux Gleyic Luvisols, et sur des sols cultivés et en prairie, dont un Haplic Fluvisol et deux Gleyic Cambisols. En parallèle, les cinétiques de production et de consommation de N2_2O au cours de la dénitrification ont été étudiées au laboratoire sur des suspensions de sol, au cours d'incubations anaérobies avec apport de NO3_3^- et de N2_2O, en présence et en absence d'acétylène. Les sols qui émettent le plus de N2_2O "in situ " , c'est-à-dire les Gleyic Luvisols cultivés et les sols de prairie, accumulent aussi beaucoup de N2_2O au cours du processus de dénitrification étudié au laboratoire. Nous proposons donc un indicateur empirique, mesuré au laboratoire, des potentialités des sols à émettre N2_2O au champ. L'apport de carbone à l'un des Gleyic Luvisols a favorisé la réduction du N2_2O et limité l'accumulation transitoire de N2_2O au cours de la dénitrification étudiée au laboratoire

    Quorum-Sensing-Negative (lasR) Mutants of Pseudomonas aeruginosa Avoid Cell Lysis and Death

    No full text
    In Pseudomonas aeruginosa, N-acylhomoserine lactone signals regulate the expression of several hundreds of genes, via the transcriptional regulator LasR and, in part, also via the subordinate regulator RhlR. This regulatory network termed quorum sensing contributes to the virulence of P. aeruginosa as a pathogen. The fact that two supposed PAO1 wild-type strains from strain collections were found to be defective for LasR function because of independent point mutations in the lasR gene led to the hypothesis that loss of quorum sensing might confer a selective advantage on P. aeruginosa under certain environmental conditions. A convenient plate assay for LasR function was devised, based on the observation that lasR mutants did not grow on adenosine as the sole carbon source because a key degradative enzyme, nucleoside hydrolase (Nuh), is positively controlled by LasR. The wild-type PAO1 and lasR mutants showed similar growth rates when incubated in nutrient yeast broth at pH 6.8 and 37°C with good aeration. However, after termination of growth during 30 to 54 h of incubation, when the pH rose to ≥ 9, the lasR mutants were significantly more resistant to cell lysis and death than was the wild type. As a consequence, the lasR mutant-to-wild-type ratio increased about 10-fold in mixed cultures incubated for 54 h. In a PAO1 culture, five consecutive cycles of 48 h of incubation sufficed to enrich for about 10% of spontaneous mutants with a Nuh(−) phenotype, and five of these mutants, which were functionally complemented by lasR(+), had mutations in lasR. The observation that, in buffered nutrient yeast broth, the wild type and lasR mutants exhibited similar low tendencies to undergo cell lysis and death suggests that alkaline stress may be a critical factor providing a selective survival advantage to lasR mutants

    Positive Control of Swarming, Rhamnolipid Synthesis, and Lipase Production by the Posttranscriptional RsmA/RsmZ System in Pseudomonas aeruginosa PAO1

    No full text
    In Pseudomonas aeruginosa, the small RNA-binding, regulatory protein RsmA is a negative control element in the formation of several extracellular products (e.g., pyocyanin, hydrogen cyanide, PA-IL lectin) as well as in the production of N-acylhomoserine lactone quorum-sensing signal molecules. RsmA was found to control positively the ability to swarm and to produce extracellular rhamnolipids and lipase, i.e., functions contributing to niche colonization by P. aeruginosa. An rsmA null mutant was entirely devoid of swarming but produced detectable amounts of rhamnolipids, suggesting that factors in addition to rhamnolipids influence the swarming ability of P. aeruginosa. A small regulatory RNA, rsmZ, which antagonized the effects of RsmA, was identified in P. aeruginosa. Expression of the rsmZ gene was dependent on both the global regulator GacA and RsmA, increased with cell density, and was subject to negative autoregulation. Overexpression of rsmZ and a null mutation in rsmA resulted in quantitatively similar, negative or positive effects on target genes, in agreement with a model that postulates titration of RsmA protein by RsmZ RNA
    corecore