5,375 research outputs found

    Rev Variation during Persistent Lentivirus Infection

    Get PDF
    The ability of lentiviruses to continually evolve and escape immune control is the central impediment in developing an effective vaccine for HIV-1 and other lentiviruses. Equine infectious anemia virus (EIAV) is considered a useful model for immune control of lentivirus infection. Virus-specific cytotoxic T lymphocytes (CTL) and broadly neutralizing antibody effectively control EIAV replication during inapparent stages of disease, but after years of low-level replication, the virus is still able to produce evasion genotypes that lead to late re-emergence of disease. There is a high rate of genetic variation in the EIAV surface envelope glycoprotein (SU) and in the region of the transmembrane protein (TM) overlapped by the major exon of Rev. This review examines genetic and phenotypic variation in Rev during EIAV disease and a possible role for Rev in immune evasion and virus persistence

    Global malaria importations

    Get PDF

    Stabilization of highly polar BiFeO3_3-like structure: a new interface design route for enhanced ferroelectricity in artificial perovskite superlattices

    Full text link
    In ABO3 perovskites, oxygen octahedron rotations are common structural distortions that can promote large ferroelectricity in BiFeO3 with an R3c structure [1], but suppress ferroelectricity in CaTiO3 with a Pbnm symmetry [2]. For many CaTiO3-like perovskites, the BiFeO3 structure is a metastable phase. Here, we report the stabilization of the highly-polar BiFeO3-like phase of CaTiO3 in a BaTiO3/CaTiO3 superlattice grown on a SrTiO3 substrate. The stabilization is realized by a reconstruction of oxygen octahedron rotations at the interface from the pattern of nonpolar bulk CaTiO3 to a different pattern that is characteristic of a BiFeO3 phase. The reconstruction is interpreted through a combination of amplitude-contrast sub 0.1nm high-resolution transmission electron microscopy and first-principles theories of the structure, energetics, and polarization of the superlattice and its constituents. We further predict a number of new artificial ferroelectric materials demonstrating that nonpolar perovskites can be turned into ferroelectrics via this interface mechanism. Therefore, a large number of perovskites with the CaTiO3 structure type, which include many magnetic representatives, are now good candidates as novel highly-polar multiferroic materials [3].Comment: Phys. Rev. X, in productio

    Cooperativity of Glucocorticoid Response Elements Located Far Upstream of the Tyrosine Aminotransferase Gene

    Get PDF
    Two glucocorticoid response elements (GREs) located 2.5 kb upstream of the transcription initiation site of the tyrosine aminotransferase gene were identified by gene transfer experiments and shown to bind to purified glucocorticoid receptor. Although the proximal GRE has no inherent capacity by itself to stimulate transcription, when present in conjunction with the distal GRE, this element synergistically enhances glucocorticoid induction of gene expression. Cooperativity of the two GREs is maintained when they are transposed upstream of a heterologous promoter. An oligonucleotide of 22 bp representing the distal GRE is sufficient to confer glucocorticoid inducibility. As evidenced by the mapping of DNAase I hypersensitive sites, local alterations in the structure of chromatin at the GREs take place as a consequence of hormonal treatment

    Analysis of the flexural response of hybrid reinforced concrete beams with localized reinforcement corrosion

    Get PDF
    This paper presents a modeling approach to analyze the flexural response of hybrid reinforced concrete beams with localized corrosion. A new mechanical model based on extensive uniaxial testing is proposed to describe the stress–strain relationship of corroded bars with a single pit. The proposed mechanical model is then incorporated into a sectional analysis to determine the moment curvature relationship of hybrid reinforced concrete sections with pitting corrosion. The actual crack pattern is used to divide a beam into discrete hinge elements which are then combined to compute the load–deflection response of statically determinate beams. The modeling approach is evaluated with available experimental data showing good predictive capabilities. A parametric study revealed the importance of the interaction between the tensile reinforcement ratio and the concrete postcracking residual stress. Furthermore, the deformation capacity of reinforcement bars with pitting corrosion levels beyond 0.25 was shown to have a dominant effect on the ultimate deflection of hybrid reinforced concrete beams
    • …
    corecore