30 research outputs found

    Immunogenicity of HLA Class i and II double restricted influenza a-derived peptides

    Get PDF
    The aim of the present study was to identify influenza A-derived peptides which bind to both HLA class I and-II molecules and by immunization lead to both HLA class I and class II restricted immune responses. Eight influenza A-derived 9-11mer peptides with simultaneous binding to both HLA-A02:01 and HLA-DRB101:01 molecules were identified by bioinformatics and biochemical technology. Immunization of transgenic HLA-A02:01/HLADRB101:01 mice with four of these double binding peptides gave rise to both HLA class I and class II restricted responses by CD8 and CD4 T cells, respectively, whereas four of the double binding peptides did result in HLA-A02:01 restricted responses only. According to their cytokine profile, the CD4 T cell responses were of the Th2 type. In influenza infected mice, we were unable to detect natural processing in vivo of the double restricted peptides and in line with this, peptide vaccination did not decrease virus titres in the lungs of intranasally influenza challenged mice. Our data show that HLA class I and class II double binding peptides can be identified by bioinformatics and biochemical technology. By immunization, double binding peptides can give rise to both HLA class I and class I restricted responses, a quality which might be of potential interest for peptide-based vaccine development.Fil: Pedersen, Sara Ram. Universidad de Copenhagen; DinamarcaFil: Christensen, Jan Pravsgaard. Universidad de Copenhagen; DinamarcaFil: Buus, Søren. Universidad de Copenhagen; DinamarcaFil: Rasmussen, Michael. Universidad de Copenhagen; DinamarcaFil: Korsholm, Karen Smith. Statens Serum Institute; DinamarcaFil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Claesson, Mogens Helweg. Universidad de Copenhagen; Dinamarc

    Prevalence of Mycobacterium tuberculosis infection as measured by the QuantiFERON-TB Gold assay and ESAT-6 free IGRA among adolescents in Mwanza, Tanzania

    Get PDF
    Background The prevalence of latent tuberculosis infection (LTBI) is vastly higher than that of tuberculosis (TB) disease and this enormous reservoir of individuals with LTBI impacts the global TB control strategy. Adolescents are at greatest risk of TB infection and are thus an ideal target population for a potential effective TB vaccine to be added to the current BCG programme as it could reduce the number of latent infections and consequently the number of adults with TB disease. However, LTBI rates are often unknown for this population. This study aims to estimate the magnitude of LTBI and to determine if Tanzanian adolescents would be a good population for a prevention of TB infection trial. Methods This was a descriptive cross-sectional study that recruited 193 adolescents aged 12 and 16 years from government schools and directly from the community in Mwanza Region, Tanzania. Socio-demographic characteristics were collected for all enrolled participants. Blood was drawn and tested using QuantiFERON-TB Gold In-Tube (QFT-GIT), and Early Secretory Antigenic Target-6–Free Interferon-gamma Release Assay (ESAT-6 free IGRA). Concordance between QFT-GIT and ESAT-6 free IGRA was evaluated using the McNemar’s test. Results Overall estimates of LTBI prevalence were 19.2% [95%CI, 14.1; 25.2] and 18.6% [95%CI, 13.6; 24.6] as measured by QFT-GIT IGRA and ESAT-6 free IGRA, respectively. The 16-year-old cohort had a higher LTBI prevalence (23.7% [95%CI, 16.1; 32.9]) as compared to 12-year-old cohort (14.6% [95%CI, 8.6; 22.7]) as measured by QFT-GIT IGRA. When measured by ESAT-6 Free IGRA, LTBI prevalence was 24.7% (95%CI, 16.9; 34.0) for the 16-year-old cohort and 12.5% (95%CI, 7.0; 20.3) among the 12-year-old cohort. According to both tests the prevalence of TB infection and the corresponding annual risk of tuberculosis infection (ARTI) and force of infection were high and increased with age. Of all enrolled participants, 97.4% had concordant results for QFT-GIT IGRA and ESAT-6 free IGRA (p = 0.65). Conclusions The prevalence of LTBI and the associated ARTI and force of infection among adolescents is high and increases with age in Mwanza Region. There was a high concordance between the QFT-GIT and the novel ESAT-6 free IGRA assays. These findings suggest Mwanza is a promising area to conduct novel TB vaccine research prevention of infection (POI) studies targeting adolescents.publishedVersio

    Induction of Cytotoxic T-Lymphocyte Responses Upon Subcutaneous Administration of a Subunit Vaccine Adjuvanted With an Emulsion Containing the Toll-Like Receptor 3 Ligand Poly(I:C)

    Get PDF
    There is an unmet medical need for new subunit vaccines that induce cytotoxic T-lymphocyte (CTL) responses to prevent infection with a number of pathogens. However, stimulation of CTL responses via clinically acceptable subcutaneous (s.c.) and intramuscular (i.m.) injection is challenging. Recently, we designed a liposomal adjuvant [cationic adjuvant formulation (CAF)09] composed of the cationic lipid dimethyldioctadecylammonium (DDA) bromide, a synthetic monomycoloyl glycerol analog and polyinosinic:polycytidylic acid, which induce strong CTL responses to peptide and protein antigens after intraperitoneal administration. By contrast, CAF09 does not stimulate CTL responses upon s.c. or i.m. injection because the vaccine forms a depot that remains at the injection site. Hence, we engineered a series of nanoemulsions (CAF24a–c) based on the active components of CAF09. The oil phase consisted of biodegradable squalane, and the surface charge was varied systematically by replacing DDA with zwitterionic distearoylphosphoethanolamine. We hypothesized that the nanoemulsions drain to the lymph nodes to a larger extent than CAF09, upon s.c. co-administration with the model antigen chicken egg ovalbumin (OVA). This results in an increased dose fraction that reaches the draining lymph nodes (dLNs) and subsequently activates cross-presenting dendritic cells (DCs), which can prime CTL responses. Indeed, the nanoemulsions induced antigen-specific CD8+ T-cell responses, which were significantly higher than those stimulated by OVA adjuvanted with CAF09. We explain this by the observed rapid localization of CAF24a in the dLNs and the subsequent association with conventional DCs, which promotes induction of CTL responses. Uptake of CAF24a was not specific for DCs, because CAF24a was also detected with B cells and macrophages. No measurable dose fraction of CAF09 was detected in the dLNs within the study period, and CAF09 formed a depot at the site of injection. Importantly, s.c. vaccination with OVA adjuvanted with CAF24a induced significant levels of specific lysis of antigen-pulsed splenocytes were induced after, which was not observed for OVA adjuvanted with CAF09. Thus, CAF24a is a promising adjuvant for induction of CTL responses upon s.c. and i.m. immunization, and it offers interesting perspectives for the design of vaccines against pathogens for which CTL responses are required to prevent infection

    The administration route is decisive for the ability of the vaccine adjuvant CAF09 to induce antigen-specific CD8+ T-cell responses:the immunological consequences of the biodistribution profile

    Get PDF
    A prerequisite for vaccine-mediated induction of CD8+ T-cell responses is the targeting of dendritic cell (DC) subsets specifically capable of cross-presenting antigen epitopes to CD8+ T cells. Administration of a number of cationic adjuvants via the intraperitoneal (i.p.) route has been shown to result in strong CD8+ T-cell responses, whereas immunization via e.g. the intramuscular (i.m.) or subcutaneous (s.c.) routes often stimulate weak CD8+ T-cell responses. The hypothesis for this is that self-drainage of the adjuvant/antigen to the lymphoid organs, which takes place upon i.p. immunization, is required for the subsequent activation of cross-presenting lymphoid organ-resident CD8α+ DCs. In contrast, s.c. or i.m. immunization usually results in the formation of a depot at the site of injection (SOI), which hinders the self-drainage and targeting of the vaccine to cross-presenting CD8α+ DCs. We investigated this hypothesis by correlating the biodistribution pattern and the adjuvanticity of the strong CD8+ T-cell inducing liposomal cationic adjuvant formulation 09 (CAF09), which is composed of dimethyldioctadecylammonium bromide/monomycoloyl glycerol liposomes with polyinosinic:polycytidylic acid electrostatically adsorbed to the surface. Biodistribution studies with radiolabeled CAF09 and a surface-adsorbed model antigen [ovalbumin (OVA)] showed that a significantly larger fraction of the vaccine dose localized in the draining lymph nodes (dLNs) and the spleen 6 h after i.p. immunization, as compared to after i.m. immunization. Studies with fluorescently labelled OVA + CAF09 demonstrated a preferential association of OVA + CAF09 to DCs/monocytes, as compared to macrophages and B cells, following i.p. immunization. Administration of OVA + CAF09 via the i.p. route did also result in DC activation, whereas no DC activation could be measured within the same period with unadjuvanted OVA and OVA + CAF09 administered via the s.c. or i.m. routes. In the dLNs, the highest level of activated, cross-presenting CD8α+ DCs was detected at 24 h post immunization, whereas an influx of activated, migrating and cross-presenting CD103+ DCs to the dLNs could be measured after 48 h. This suggests that the CD8α+ DCs are activated by self-draining OVA + CAF09 in the lymphoid organs, whereas the CD103+ DCs are stimulated by the OVA + CAF09 at the SOI. These results support the hypothesis that the self-drainage of OVA + CAF09 to the draining LNs is required for the activation of CD8α+ DCs, while the migratory CD103+ DCs may play a role in sustaining the subsequent induction of strong CD8+ T-cell responses

    Liposome-Based Adjuvants for Subunit Vaccines: Formulation Strategies for Subunit Antigens and Immunostimulators

    No full text
    The development of subunit vaccines has become very attractive in recent years due to their superior safety profiles as compared to traditional vaccines based on live attenuated or whole inactivated pathogens, and there is an unmet medical need for improved vaccines and vaccines against pathogens for which no effective vaccines exist. The subunit vaccine technology exploits pathogen subunits as antigens, e.g., recombinant proteins or synthetic peptides, allowing for highly specific immune responses against the pathogens. However, such antigens are usually not sufficiently immunogenic to induce protective immunity, and they are often combined with adjuvants to ensure robust immune responses. Adjuvants are capable of enhancing and/or modulating immune responses by exposing antigens to antigen-presenting cells (APCs) concomitantly with conferring immune activation signals. Few adjuvant systems have been licensed for use in human vaccines, and they mainly stimulate humoral immunity. Thus, there is an unmet demand for the development of safe and efficient adjuvant systems that can also stimulate cell-mediated immunity (CMI). Adjuvants constitute a heterogeneous group of compounds, which can broadly be classified into delivery systems or immunostimulators. Liposomes are versatile delivery systems for antigens, and they can carefully be customized towards desired immune profiles by combining them with immunostimulators and optimizing their composition, physicochemical properties and antigen-loading mode. Immunostimulators represent highly diverse classes of molecules, e.g., lipids, nucleic acids, proteins and peptides, and they are ligands for pattern-recognition receptors (PRRs), which are differentially expressed on APC subsets. Different formulation strategies might thus be required for incorporation of immunostimulators and antigens, respectively, into liposomes, and the choice of immunostimulator should ideally be based on knowledge regarding the specific PRR expression profile of the target APCs. Here, we review state-of-the-art formulation approaches employed for the inclusion of immunostimulators and subunit antigens into liposome dispersion and their optimization towards robust vaccine formulations

    T-helper 1 and T-helper 2 adjuvants induce distinct differences in the magnitude, quality and kinetics of the early inflammatory response at the site of injection

    No full text
    Vaccine adjuvants activate the innate immune system and thus influence subsequent adaptive T-cell responses. However, little is known about the initial immune mechanisms preceding the adjuvant-induced differentiation of T-helper (Th) cells. The effect of a T-helper 1 (Th1) adjuvant, dimethyldioctadecylammonium liposomes with monophosphoryl lipid-A (DDA/MPL), and a T-helper 2 adjuvant, aluminium hydroxide [Al(OH)3], on early, innate chemotactic signals and inflammatory cell influx at the site of injection was therefore investigated. Injection of the adjuvants into the peritoneal cavity of mice demonstrated distinct differences in the magnitude, quality and kinetics of the response. The inflammatory response to DDA/MPL was prominent, inducing high local levels of pro-inflammatory cytokines, chemokines and a pronounced inflammatory exudate consisting of neutrophils, monocytes/macrophages and activated natural killer cells. This was in contrast to the response induced by Al(OH)3, which, although sharing some of the early chemokine signals, was more moderate and consisted almost exclusively of neutrophils and eosinophils. Notably, Al(OH)3 specifically induced the release of a significant amount of interleukin (IL)-5, whereas DDA/MPL induced high amounts of tumour necrosis factor-α (TNF-α), IL-1α and IL-6. Finally, a microarray analysis confirmed that the effect of DDA/MPL was broader with more than five times as many genes being specifically up-regulated after injection of DDA/MPL compared with Al(OH)3. Thus, the adjuvants induced qualitatively distinct local inflammatory signals early after injection
    corecore