6 research outputs found

    Expression in transgenic mice of dominant interfering Fas mutations: A model for human autoimmune lymphoproliferative syndrome

    No full text
    Most humans with autoimmune lymphoproliferative syndrome (ALPS) carry heterozygous dominant mutations in one allele of the gene encoding Fas/APO-1/ CD95. ALPS patients, like Fas-deficient MRL lpr/lpr mice, have lymphoproliferation, autoimmunity, increased CD4(-)/CD8(-) T lymphocytes, and apoptosis defects. Consistent with the phenotypic variability of lpr/lpr mice of different background strains, human genetic studies indicate that a Fas mutation is insufficient to induce ALPS in all mutation carriers, To investigate the dominant function of human Fas mutations and the additional genetic factor(s) involved in the development of ALPS, we generated transgenic mice expressing, in addition to endogenous Fas, mouse Fas molecules bearing mutations in the intracellular death domain corresponding to mutations identified in ALPS patients. Transgenic mice developed mild features of ALPS, including hepatosplenomegaly, elevated proportions of lymphocytes in spleen and lymph nodes, apoptotic defects, and hepatic lymphocytic infiltrates. Therefore defective murine Fas proteins act in a dominant manner to impair apoptosis of activated lymphocytes and disrupt lymphocyte homeostasis, The influence of genetic background on phenotype was studied by comparing transgenic mice on FVB/N and (FVB/N x MRL) backgrounds with syngenetic control mice and with MRL and MRL lpr/lpr mice. While expression of transgenic mutant Fas contributed mainly to hepatosplenomegaly and accumulation of lymphocytes, MRL background genes played a major role in the production of autoantibodies and elevated serum immunoglobulin levels. Moreover, compared to FVB/N (+/+) mice, a substantial Fas-specific apoptotic defect was found in MRL (+/+) mice, suggesting a mechanism for the known tendency of this strain to develop autoimmunity. (C) 1999 Academic Press.N

    Human adenylate kinase 2 deficiency causes a profound hematopoietic defect associated with sensorineural deafness.

    No full text
    Reticular dysgenesis is an autosomal recessive form of human severe combined immunodeficiency characterized by an early differentiation arrest in the myeloid lineage and impaired lymphoid maturation. In addition, affected newborns have bilateral sensorineural deafness. Here we identify biallelic mutations in AK2 (adenylate kinase 2) in seven individuals affected with reticular dysgenesis. These mutations result in absent or strongly decreased protein expression. We then demonstrate that restoration of AK2 expression in the bone marrow cells of individuals with reticular dysgenesis overcomes the neutrophil differentiation arrest, underlining its specific requirement in the development of a restricted set of hematopoietic lineages. Last, we establish that AK2 is specifically expressed in the stria vascularis region of the inner ear, which provides an explanation of the sensorineural deafness in these individuals. These results identify a previously unknown mechanism involved in regulation of hematopoietic cell differentiation and in one of the most severe human immunodeficiency syndromes.Journal ArticleResearch Support, N.I.H. IntramuralResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    1994 Annual Selected Bibliography: Asian American Studies and the Crisis of Practice

    No full text
    corecore