38 research outputs found

    Bird evolution: testing the Metaves clade with six new mitochondrial genomes

    Get PDF
    Background Evolutionary biologists are often misled by convergence of morphology and this has been common in the study of bird evolution. However, the use of molecular data sets have their own problems and phylogenies based on short DNA sequences have the potential to mislead us too. The relationships among clades and timing of the evolution of modern birds (Neoaves) has not yet been well resolved. Evidence of convergence of morphology remain controversial. With six new bird mitochondrial genomes (hummingbird, swift, kagu, rail, flamingo and grebe) we test the proposed Metaves/Coronaves division within Neoaves and the parallel radiations in this primary avian clade. Results Our mitochondrial trees did not return the Metaves clade that had been proposed based on one nuclear intron sequence. We suggest that the high number of indels within the seventh intron of the β-fibrinogen gene at this phylogenetic level, which left a dataset with not a single site across the alignment shared by all taxa, resulted in artifacts during analysis. With respect to the overall avian tree, we find the flamingo and grebe are sister taxa and basal to the shorebirds (Charadriiformes). Using a novel site-stripping technique for noise-reduction we found this relationship to be stable. The hummingbird/swift clade is outside the large and very diverse group of raptors, shore and sea birds. Unexpectedly the kagu is not closely related to the rail in our analysis, but because neither the kagu nor the rail have close affinity to any taxa within this dataset of 41 birds, their placement is not yet resolved. Conclusion Our phylogenetic hypothesis based on 41 avian mitochondrial genomes (13,229 bp) rejects monophyly of seven Metaves species and we therefore conclude that the members of Metaves do not share a common evolutionary history within the Neoaves

    Ancient and modern mitogenomes from Central Argentina: New insights into population continuity, temporal depth and migration in South America

    Get PDF
    The inverted triangle shape of South America places Argentina territory as a geographical crossroads between the two principal peopling streams that followed either the Pacific or the Atlantic coasts, which could have then merged in Central Argentina (CA). Although the genetic diversity from this region is therefore crucial to decipher past population movements in South America, its characterization has been overlooked so far. We report 92 modern and 22 ancient mitogenomes spanning a temporal range of 5000 years, which were compared with a large set of previously reported data. Leveraging this dataset representative of the mitochondrial diversity of the subcontinent, we investigate the maternal history of CA populations within a wider geographical context. We describe a large number of novel clades within the mitochondrial DNA tree, thus providing new phylogenetic interpretations for South America. We also identify several local clades of great temporal depth with continuity until the present time, which stem directly from the founder haplotypes, suggesting that they originated in the region and expanded from there. Moreover, the presence of lineages characteristic of other South American regions reveals the existence of gene flow to CA. Finally, we report some lineages with discontinuous distribution across the Americas, which suggest the persistence of relic lineages likely linked to the first population arrivals. The present study represents to date the most exhaustive attempt to elaborate a Native American genetic map from modern and ancient complete mitochondrial genomes in Argentina and provides relevant information about the general process of settlement in South America.This work was supported by Agencia Nacional de PromociĂłn de la InvestigaciĂłn, el Desarrollo TecnolĂłgico y la InnovaciĂłn (PICT 2007-1549, PICT 2012-711 and PICT 2015-3155), SecretarĂ­a de Ciencia y TecnologĂ­a (Universidad Nacional de CĂłrdoba), Ministerio de Ciencia y TecnologĂ­a de la Provincia de CĂłrdoba (PID 2018-79) and Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas (2015-11220150100953CO). M.P. is a postdoctoral fellow and A.G., R.N., J.M.B.M, C.M.B., M.F. and D.A.D. are research career members of CONICET, Argentina

    Pronounced sequence specificity of the TET enzyme catalytic domain guides its cellular function

    Get PDF
    TET (ten-eleven translocation) enzymes catalyze the oxidation of 5-methylcytosine bases in DNA, thus driving active and passive DNA demethylation. Here, we report that the catalytic domain of mammalian TET enzymes favor CGs embedded within basic helix-loop-helix and basic leucine zipper domain transcription factor–binding sites, with up to 250-fold preference in vitro. Crystal structures and molecular dynamics calculations show that sequence preference is caused by intrasubstrate interactions and CG flanking sequence indirectly affecting enzyme conformation. TET sequence preferences are physiologically relevant as they explain the rates of DNA demethylation in TET-rescue experiments in culture and in vivo within the zygote and germ line. Most and least favorable TET motifs represent DNA sites that are bound by methylation-sensitive immediate-early transcription factors and octamer-binding transcription factor 4 (OCT4), respectively, illuminating TET function in transcriptional responses and pluripotency support

    The elephant shark methylome reveals conservation of epigenetic regulation across jawed vertebrates [version 1; referees: 2 approved]

    No full text
    Background: Methylation of CG dinucleotides constitutes a critical system of epigenetic memory in bony vertebrates, where it modulates gene expression and suppresses transposon activity. The genomes of studied vertebrates are pervasively hypermethylated, with the exception of regulatory elements such as transcription start sites (TSSs), where the presence of methylation is associated with gene silencing. This system is not found in the sparsely methylated genomes of invertebrates, and establishing how it arose during early vertebrate evolution is impeded by a paucity of epigenetic data from basal vertebrates. Methods: We perform whole-genome bisulfite sequencing to generate the first genome-wide methylation profiles of a cartilaginous fish, the elephant shark Callorhinchus milii. Employing these to determine the elephant shark methylome structure and its relationship with expression, we compare this with higher vertebrates and an invertebrate chordate using published methylation and transcriptome data.  Results: Like higher vertebrates, the majority of elephant shark CG sites are highly methylated, and methylation is abundant across the genome rather than patterned in the mosaic configuration of invertebrates. This global hypermethylation includes transposable elements and the bodies of genes at all expression levels. Significantly, we document an inverse relationship between TSS methylation and expression in the elephant shark, supporting the presence of the repressive regulatory architecture shared by higher vertebrates. Conclusions: Our demonstration that methylation patterns in a cartilaginous fish are characteristic of higher vertebrates imply the conservation of this epigenetic modification system across jawed vertebrates separated by 465 million years of evolution. In addition, these findings position the elephant shark as a valuable model to explore the evolutionary history and function of vertebrate methylation

    A tale of textiles: Genetic characterization of historical paper mulberry barkcloth from Oceania

    No full text
    Humans introduced paper mulberry (Broussonetia papyrifera) from Taiwan into the Pacific over 5000 years ago as a fiber source to make barkcloth textiles that were, and still are, important cultural artifacts throughout the Pacific. We have used B. papyrifera, a species closely associated to humans, as a proxy to understand the human settlement of the Pacific Islands. We report the first genetic analysis of paper mulberry textiles from historical and archaeological contexts (200 to 50 years before present) and compare our results with genetic data obtained from contemporary and herbarium paper mulberry samples. Following stringent ancient DNA protocols, we extracted DNA from 13 barkcloth textiles. We confirmed that the fiber source is paper mulberry in nine of the 13 textiles studied using the nuclear ITS-1 marker and by statistical estimates. We detected high genetic diversity in historical Pacific paper mulberry barkcloth with a set of ten microsatellites, showing new alleles and specific genetic patterns. These genetic signatures allow tracing connections to plants from the Asian homeland, Near and Remote Oceania, establishing links not observed previously (using the same genetic tools) in extant plants or herbaria samples. These results show that historic barkcloth textiles are cultural materials amenable to genetic analysis to reveal human history and that these artifacts may harbor evidence of greater genetic diversity in Pacific B. papyrifera in the past.Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) FONDECYT 1120175 FONDECYT 1180052 University of Chile Programa PME (BP-A) Programa Enlace Facultad de Ciencias Quimicas y Farmaceuticas, PEEI 201

    Data from: Ancient mitochondrial genomes clarify the evolutionary history of New Zealand’s enigmatic acanthisittid wrens

    No full text
    The New Zealand acanthisittid wrens are the sister-taxon to all other “perching birds” (Passeriformes) and – including recently extinct species – represent the most diverse endemic passerine family in New Zealand. Consequently, they are important for understanding both the early evolution of Passeriformes and the New Zealand biota. However, five of the seven species have become extinct since the arrival of humans in New Zealand, complicating evolutionary analyses. The results of morphological analyses have been largely equivocal, and no comprehensive genetic analysis of Acanthisittidae has been undertaken. We present novel mitochondrial genome sequences from four acanthisittid species (three extinct, one extant), allowing us to resolve the phylogeny and revise the taxonomy of acanthisittids. Reanalysis of morphological data in light of our genetic results confirms a close relationship between the extant rifleman (Acanthisitta chloris) and an extinct Miocene wren (Kuiornis indicator), making Kuiornis a useful calibration point for molecular dating of passerines. Our molecular dating analyses reveal that the stout-legged wrens (Pachyplichas) diverged relatively recently from a more gracile (Xenicus-like) ancestor. Further, our results suggest a possible Early Oligocene origin of the basal Lyall’s wren (Traversia) lineage, which would imply that Acanthisittidae survived the Oligocene marine inundation of New Zealand and therefore that the inundation was not complete

    The Pacific Rat Race to Easter Island: Tracking the Prehistoric Dispersal of Rattus exulans Using Ancient Mitochondrial Genomes

    No full text
    The location of the immediate eastern Polynesian origin for the settlement of Easter Island (Rapa Nui), remains unclear with conflicting archeological and linguistic evidence. Previous genetic commensal research using the Pacific rat, Rattus exulans; a species transported by humans across Remote Oceania and throughout the Polynesian Triangle, has identified broad interaction spheres across the region. However, there has been limited success in distinguishing finer-scale movements between Remote Oceanic islands as the same mitochondrial control region haplotype has been identified in the majority of ancient rat specimens. To improve molecular resolution and identify a pattern of prehistoric dispersal to Easter Island, we sequenced complete mitochondrial genomes from ancient Pacific rat specimens obtained from early archeological contexts across West and East Polynesia. Ancient Polynesian rat haplotypes are closely related and reflect the widely supported scenario of a central East Polynesian homeland region from which eastern expansion occurred. An Easter Island and Tubuai (Austral Islands) grouping of related haplotypes suggests that both islands were established by the same colonization wave, proposed to have originated in the central homeland region before dispersing through the south-eastern corridor of East Polynesia

    Complete genomes of two extinct New Zealand passerines show responses to climate fluctuations but no evidence for genomic erosion prior to extinction

    No full text
    Human intervention, pre-human climate change (or a combination of both), as well as genetic effects, contribute to species extinctions. While many species from oceanic islands have gone extinct due to direct human impacts, the effects of pre-human climate change and human settlement on the genomic diversity of insular species and the role that loss of genomic diversity played in their extinctions remains largely unexplored. To address this question, we sequenced whole genomes of two extinct New Zealand passerines, the huia (Heteralocha acutirostris) and South Island kokako (Callaeas cinereus). Both species showed similar demographic trajectories throughout the Pleistocene. However, the South Island kokako continued to decline after the last glaciation, while the huia experienced some recovery. Moreover, there was no indication of inbreeding resulting from recent mating among closely related individuals in either species. This latter result indicates that population fragmentation associated with forest clearing by Maori may not have been strong enough to lead to an increase in inbreeding and exposure to genomic erosion. While genomic erosion may not have directly contributed to their extinctions, further habitat fragmentation and the introduction of mammalian predators by Europeans may have been an important driver of extinction in huia and South Island kokako
    corecore