74 research outputs found
Cellular Uptake and Nuclear Delivery of Recombinant Adenovirus Penton Base
AbstractAn Ad2 capsid component, the penton base, expressed as recombinant protein, was found to be capable of affecting the entire entry pathway of adenovirion in HeLa cells, i.e., cell attachment, endocytosis, vesicular escape, intracytoplasmic movement, and translocation through the nuclear pore complex. Data with pentamerization-defective mutants suggested that none of these successive steps depended upon penton base pentamer status, indicating that the peptide domains responsible for these functions were carried by the monomer. Observations performed with wild-type (WT) and an integrin-binding-site double-mutant (K288E340) suggested that the penton base could enter the cell via an alternative, RGD- and LDV-independent, pathway. Of three mutants that were found to be defective in nuclear addressing in insect cells, only one, W165H, was also altered in nuclear transport in HeLa cells. The other two, W119H and RRR547EQQ, showed a WT pattern of nuclear localization in HeLa cells, suggesting that the region including tryptophan-119 and the basic signal at position 547 did not act as a nuclear localization signal in the human cell context. The integrity of cellular structures and the cytoskeleton seemed to be required for the vectorial movement and nuclear import of WT penton base, as suggested by experiments using permeabilized HeLa cells, isolated nuclear membranes, and cytoskeleton-targeted drugs
DGKI Methylation Status Modulates the Prognostic Value of MGMT in Glioblastoma Patients Treated with Combined Radio-Chemotherapy with Temozolomide
International audienceBackgroundConsistently reported prognostic factors for glioblastoma (GBM) are age, extent of surgery, performance status, IDH1 mutational status, and MGMT promoter methylation status. We aimed to integrate biological and clinical prognostic factors into a nomogram intended to predict the survival time of an individual GBM patient treated with a standard regimen. In a previous study we showed that the methylation status of the DGKI promoter identified patients with MGMT-methylated tumors that responded poorly to the standard regimen. We further evaluated the potential prognostic value of DGKI methylation status.Methods399 patients with newly diagnosed GBM and treated with a standard regimen were retrospectively included in this study. Survival modelling was performed on two patient populations: intention-to-treat population of all included patients (population 1) and MGMT-methylated patients (population 2). Cox proportional hazard models were fitted to identify the main prognostic factors. A nomogram was developed for population 1. The prognostic value of DGKI promoter methylation status was evaluated on population 1 and population 2.ResultsThe nomogram-based stratification of the cohort identified two risk groups (high/low) with significantly different median survival. We validated the prognostic value of DGKI methylation status for MGMT-methylated patients. We also demonstrated that the DGKI methylation status identified 22% of poorly responding patients in the low-risk group defined by the nomogram.ConclusionsOur results improve the conventional MGMT stratification of GBM patients receiving standard treatment. These results could help the interpretation of published or ongoing clinical trial outcomes and refine patient recruitment in the future
The tumoral A genotype of the MGMT rs34180180 single-nucleotide polymorphism in aggressive gliomas is associated with shorter patients' survival
Malignant gliomas are the most common primary brain tumors. Grade III and IV gliomas harboring wild-type IDH1/2 are the most aggressive. In addition to surgery and radiotherapy, concomitant and adjuvant chemotherapy with temozolomide (TMZ) significantly improves overall survival (OS). The methylation status of the O-6-methylguanine-DNA methyltransferase (MGMT) promoter is predictive of TMZ response and a prognostic marker of cancer outcome. However, the promoter regions the methylation of which correlates best with survival in aggressive glioma and whether the promoter methylation status predictive value could be refined or improved by other MGMT-associated molecular markers are not precisely known. In a cohort of 87 malignant gliomas treated with radiotherapy and TMZ-based chemotherapy, we retrospectively determined the MGMT promoter methylation status, genotyped single nucleotide polymorphisms (SNPs) in the promoter region and quantified MGMT mRNA expression level. Each of these variables was correlated with each other and with the patients' OS. We found that methylation of the CpG sites within MGMT exon 1 best correlated with OS and MGMT expression levels, and confirmed MGMT methylation as a stronger independent prognostic factor compared to MGMT transcription levels. Our main finding is that the presence of only the A allele at the rs34180180 SNP in the tumor was significantly associated with shorter OS, independently of the MGMT methylation status. In conclusion, in the clinic, rs34180180 SNP genotyping could improve the prognostic value of the MGMT promoter methylation assay in patients with aggressive glioma treated with TMZ.ARC -Fondation ARC pour la Recherche sur le Cancer(EML20120904843
Increasing the Number of Thyroid Lesions Classes in Microarray Analysis Improves the Relevance of Diagnostic Markers
BackgroundGenetic markers for thyroid cancers identified by microarray analysis have offered limited predictive accuracy so far because of the few classes of thyroid lesions usually taken into account. To improve diagnostic relevance, we have simultaneously analyzed microarray data from six public datasets covering a total of 347 thyroid tissue samples representing 12 histological classes of follicular lesions and normal thyroid tissue. Our own dataset, containing about half the thyroid tissue samples, included all categories of thyroid lesions. Methodology/Principal Findings Classifier predictions were strongly affected by similarities between classes and by the number of classes in the training sets. In each dataset, sample prediction was improved by separating the samples into three groups according to class similarities. The cross-validation of differential genes revealed four clusters with functional enrichments. The analysis of six of these genes (APOD, APOE, CLGN, CRABP1, SDHA and TIMP1) in 49 new samples showed consistent gene and protein profiles with the class similarities observed. Focusing on four subclasses of follicular tumor, we explored the diagnostic potential of 12 selected markers (CASP10, CDH16, CLGN, CRABP1, HMGB2, ALPL2, ADAMTS2, CABIN1, ALDH1A3, USP13, NR2F2, KRTHB5) by real-time quantitative RT-PCR on 32 other new samples. The gene expression profiles of follicular tumors were examined with reference to the mutational status of the Pax8-PPARγ, TSHR, GNAS and NRAS genes. Conclusion/Significance We show that diagnostic tools defined on the basis of microarray data are more relevant when a large number of samples and tissue classes are used. Taking into account the relationships between the thyroid tumor pathologies, together with the main biological functions and pathways involved, improved the diagnostic accuracy of the samples. Our approach was particularly relevant for the classification of microfollicular adenomas
Hippo Signaling Pathway in Gliomas
The Hippo signaling pathway is a highly conserved pathway involved in tissue development and regeneration that controls organ size through the regulation of cell proliferation and apoptosis. The core Hippo pathway is composed of a block of kinases, MST1/2 (Mammalian STE20-like protein kinase 1/2) and LATS1/2 (Large tumor suppressor 1/2), which inhibits nuclear translocation of YAP/TAZ (Yes-Associated Protein 1/Transcriptional co-activator with PDZ-binding motif) and its downstream association with the TEAD (TEA domain) family of transcription factors. This pathway was recently shown to be involved in tumorigenesis and metastasis in several cancers such as lung, breast, or colorectal cancers but is still poorly investigated in brain tumors. Gliomas are the most common and the most lethal primary brain tumors representing about 80% of malignant central nervous system neoplasms. Despite intensive clinical protocol, the prognosis for patients remains very poor due to systematic relapse and treatment failure. Growing evidence demonstrating the role of Hippo signaling in cancer biology and the lack of efficient treatments for malignant gliomas support the idea that this pathway could represent a potential target paving the way for alternative therapeutics. Based on recent advances in the Hippo pathway deciphering, the main goal of this review is to highlight the role of this pathway in gliomas by a state-of-the-art synthesis
Analysis of factors influencing molecular testing at diagnostic of colorectal cancer
Abstract Background The aim of the study was to evaluate the current rate of molecular testing prescription (KRAS codons 12/13, BRAF and microsatellite instability (MSI)) in newly diagnosed colorectal cancer (CRC) patients and to determine which factors influence testing. Methods All incident CRC cases in 2010 were identified in the Poitou-Charentes General Cancer Registry. The exhaustive molecular testing performed was accessed in the French molecular genetics platform. Factors influencing prescription were analyzed using logistic regression. Results Among the 1269 CRCs included in the study, KRAS, BRAF and MSI testing accounted for 35.1%, 10.5% and 10.9%, respectively. KRAS testing was carried out in 65.5% of metastatic CRCs, and 26.1% of non-metastatic CRCs. Among metastatic CRCs, age (<60 years), site of primary tumour (left colon) and geographical area of treatment were factors related to KRAS testing. BRAF testing was contemporary to KRAS testing for 92.5% of patients. Factors related to MSI testing were age (<60 years), TNM stage (stage IV) and geographical area of treatment. Among CRC patients under 60 years old, only 37.5% had MSI testing. Conclusion These results underscore the need to reduce disparities in CRC molecular testing and highlight the limited application of the French guidelines, especially concerning MSI testing
High Intra- and Inter-Tumoral Heterogeneity of RAS Mutations in Colorectal Cancer
Approximately 30% of patients with wild type RAS metastatic colorectal cancer are non-responders to anti-epidermal growth factor receptor monoclonal antibodies (anti-EGFR mAbs), possibly due to undetected tumoral subclones harboring RAS mutations. The aim of this study was to analyze the distribution of RAS mutations in different areas of the primary tumor, metastatic lymph nodes and distant metastasis. A retrospective cohort of 18 patients with a colorectal cancer (CRC) was included in the study. Multiregion analysis was performed in 60 spatially separated tumor areas according to the pathological tumor node metastasis (pTNM) staging and KRAS, NRAS and BRAF mutations were tested using pyrosequencing. In primary tumors, intra-tumoral heterogeneity for RAS mutation was found in 33% of cases. Inter-tumoral heterogeneity for RAS mutation between primary tumors and metastatic lymph nodes or distant metastasis was found in 36% of cases. Moreover, 28% of tumors had multiple RAS mutated subclones in the same tumor. A high proportion of CRCs presented intra- and/or inter-tumoral heterogeneity, which has relevant clinical implications for anti-EGFR mAbs prescription. These results suggest the need for multiple RAS testing in different parts of the same tumor and/or more sensitive techniques
Human ARF binds E2F1 and inhibits its transcriptional activity: ARF inhibits E2F1 activity
International audienceThe INK4a/ARF locus which is frequently inactivated in human tumours encodes two different tumour suppressive proteins, p16(INK4a) and ARF. p16(INK4a) is a major component of the RB pathway. ARF is part of an ARF-mdm2-p53 network that exerts a negative control on hyperproliferative signals emanating from oncogenic stimuli. Among these is the transcription factor E2F1, a final effector of the RB pathway, that induces ARF expression. Recent data suggest that ARF function is not restricted to the p53 pathway. However, ARF target(s) implicated in this p53-independent function remains to be identified. We show that ARF is able to inhibit the proliferation of human cell lines independently of their p53 status. In this context, we demonstrate that ARF interacts physically with E2F1 and inhibits its transcriptional activity. Moreover, we show that mdm2 is required for the modulation of E2F1 activity by ARF. Beside the well-known p53 and mdm2 partners, these results identify E2F1 as a new ARF target. Thus, ARF can be viewed as a dual-acting tumour suppressor protein in both the p53 and RB pathways, further emphasizing its role in tumour surveillance
- …