7 research outputs found

    Hamiltonian structures for general PDEs

    Full text link
    We sketch out a new geometric framework to construct Hamiltonian operators for generic, non-evolutionary partial differential equations. Examples on how the formalism works are provided for the KdV equation, Camassa-Holm equation, and Kupershmidt's deformation of a bi-Hamiltonian system.Comment: 12 pages; v2, v3: minor correction

    A new integrable generalization of the Korteweg - de Vries equation

    Full text link
    A new integrable sixth-order nonlinear wave equation is discovered by means of the Painleve analysis, which is equivalent to the Korteweg - de Vries equation with a source. A Lax representation and a Backlund self-transformation are found of the new equation, and its travelling wave solutions and generalized symmetries are studied.Comment: 13 pages, 2 figure

    Geometry of jet spaces and integrable systems

    Full text link
    An overview of some recent results on the geometry of partial differential equations in application to integrable systems is given. Lagrangian and Hamiltonian formalism both in the free case (on the space of infinite jets) and with constraints (on a PDE) are discussed. Analogs of tangent and cotangent bundles to a differential equation are introduced and the variational Schouten bracket is defined. General theoretical constructions are illustrated by a series of examples.Comment: 54 pages; v2-v6 : minor correction

    Colliding Abelian gauge plane waves

    No full text
    Ph.D. - Doctoral Progra
    corecore