6 research outputs found

    Donepezil and the alpha-7 agonist PHA 568487, but not risperidone, ameliorate spatial memory deficits in a subchronic MK-801 mouse modet of cognitive impairment in schizophrenia

    No full text
    Cognitive impairment associated with schizophrenia (CIAS) is an important etiological feature of this disorder with implications for symptom severity and quality of life. Acute N-methyl-D-aspartate receptor (NMDAR) blockade using MK-801, a non-competitive antagonist to NMDARs, is assumed to produce temporary cognitive impairments in mice similar to those seen in schizophrenia patients. Less is known, however, about the effects of subchronic MK-801 administration on cognition. In the current study, twenty-eight male C57/BL6 mice received a daily dose of MK-801 (0.1 mg/kg, i.p.) for seven days. Spatial memory was assessed using an object location task prior to MK-801 administration as well as at multiple time points after the treatment. Subchronic treatment with MK-801 caused lasting memory deficits, which were ameliorated by acute doses of an acetylcholinesterase inhibitor (donepezil) and an alpha-7 nicotinic agonist (PHA 568487), but were unaffected by acute administration of the atypical antipsychotic risperidone. Subchronic administration of MK-801 may lend this pharmaceutical model increased face validity, while its resemblance to prodromal schizophrenia makes it suitable for screening new CIAS treatments

    Sex shapes cell-type-specific transcriptional signatures of stress exposure in the mouse hypothalamus

    No full text
    Summary: Stress-related psychiatric disorders and the stress system show prominent differences between males and females, as well as strongly divergent transcriptional changes. Despite several proposed mechanisms, we still lack the understanding of the molecular processes at play. Here, we explore the contribution of cell types to transcriptional sex dimorphism using single-cell RNA sequencing. We identify cell-type-specific signatures of acute restraint stress in the paraventricular nucleus of the hypothalamus, a central hub of the stress response, in male and female mice. Further, we show that a history of chronic mild stress alters these signatures in a sex-specific way, and we identify oligodendrocytes as a major target for these sex-specific effects. This dataset, which we provide as an online interactive app, offers the transcriptomes of thousands of individual cells as a molecular resource for an in-depth dissection of the interplay between cell types and sex on the mechanisms of the stress response

    Wireless Optogenetic Stimulation of Oxytocin Neurons in a Semi-natural Setup Dynamically Elevates Both Pro-social and Agonistic Behaviors

    No full text
    Complex behavioral phenotyping techniques are becoming more prevalent in the field of behavioral neuroscience, and thus methods for manipulating neuronal activity must be adapted to fit into such paradigms. Here, we present a head-mounted, magnetically activated device for wireless optogenetic manipulation that is compact, simple to construct, and suitable for use in group-living mice in an enriched semi-natural arena over several days. Using this device, we demonstrate that repeated activation of oxytocin neurons in male mice can have different effects on pro-social and agonistic behaviors, depending on the social context. Our findings support the social salience hypothesis of oxytocin and emphasize the importance of the environment in the study of social neuromodulators. Our wireless optogenetic device can be easily adapted for use in a variety of behavioral paradigms, which are normally hindered by tethered light delivery or a limited environment

    Ketamine exerts its sustained antidepressant effects via cell-type-specific regulation of Kcnq2

    No full text
    A single sub-anesthetic dose of ketamine produces a rapid and sustained antidepressant response, yet the molecular mechanisms responsible for this remain unclear. Here, we identified cell-type-specific transcriptional signatures associated with a sustained ketamine response in mice. Most interestingly, we identified the Kcnq2 gene as an important downstream regulator of ketamine action in glutamatergic neurons of the ventral hippocampus. We validated these findings through a series of complementary molecular, electrophysiological, cellular, pharmacological, behavioral, and functional experiments. We demonstrated that adjunctive treatment with retigabine, a KCNQ activator, augments ketamine's antidepressant-like effects in mice. Intriguingly, these effects are ketamine specific, as they do not modulate a response to classical antidepressants, such as escitalopram. These findings significantly advance our understanding of the mechanisms underlying the sustained antidepressant effects of ketamine, with important clinical implications
    corecore