136 research outputs found

    The Rocky Road to a Digital Lab

    Get PDF
    The pharmaceutical industry has begun incorporating continuous manufacturing technology in synthetic routes toward active pharmaceutical ingredients (APIs). The development of smart manufacturing routes can be accelerated by utilizing digitalization, process analytical technology (PAT), and data-rich experimentation from an early stage. Here, we present the key aspects of implementing automated flow chemistry reactor platforms with real-time process analytics. Based on our experiences in this field, we aim to highlight the potential of these platforms to conduct self-optimization, automated reaction model building, dynamic experiments and to implement advanced process control strategie

    Flow Technology for Telescoped Generation, Lithiation and Electrophilic (C3) Functionalization of Highly Strained 1-Azabicyclo[1.1.0]butanes

    Get PDF
    Strained compounds are privileged moieties in modern synthesis. In this context, 1-azabicyclo[1.1.0]butanes are appealing structural motifs that can be employed as click reagents or precursors to azetidines. We herein report the first telescoped continuous flow protocol for the generation, lithiation, and electrophilic trapping of 1-azabicyclo[1.1.0]butanes. The flow method allows for exquisite control of the reaction parameters, and the process operates at higher temperatures and safer conditions with respect to batch mode. The efficiency of this intramolecular cyclization/C3-lithiation/electrophilic quenching flow sequence is documented with more than 20 examples

    Can electromagnetic fields influence the structure and enzymatic digest of proteins? A critical evaluation of microwave-assisted proteomics protocols

    Get PDF
    AbstractThis study reevaluates the putative advantages of microwave-assisted tryptic digests compared to conventionally heated protocols performed at the same temperature. An initial investigation of enzyme stability in a temperature range of 37–80°C demonstrated that trypsin activity declines sharply at temperatures above 60°C, regardless if microwave dielectric heating or conventional heating is employed. Tryptic digests of three proteins of different size (bovine serum albumin, cytochrome c and β-casein) were thus performed at 37°C and 50°C using both microwave and conventional heating applying accurate internal fiber-optic probe reaction temperature measurements. The impact of the heating method on protein degradation and peptide fragment generation was analyzed by SDS-PAGE and MALDI-TOF-MS. Time-dependent tryptic digestion of the three proteins and subsequent analysis of the corresponding cleavage products by MALDI-TOF provided virtually identical results for both microwave and conventional heating. In addition, the impact of electromagnetic field strength on the tertiary structure of trypsin and BSA was evaluated by molecular mechanics calculations. These simulations revealed that the applied field in a typical laboratory microwave reactor is 3–4 orders of magnitude too low to induce conformational changes in proteins or enzymes

    On the chemistry of stable alpha-oxoketenes

    Get PDF
    This short review describes the preparation and chemistry of sterically stabilized α-oxoketenes, which can be isolated and handled as true neat compounds. Their reactions with dienophiles afford [4+2] - as well as [2+2] cycloadducts depending on their ability to adopt that conformation suitable for each type of cycloaddition reactions. Addition of nucleophiles leads either to dipivaloylacetic acid derivatives as expected products or to the rare molecular skeleton of mono-or bifunctionalized bridged bisdioxines, which exhibit axial chirality. The bifunctionalized derivatives may serve as novel spacer units in several macrocyclic systems

    Anthropogenic reaction parameters - the missing link between chemical intuition and the available chemical space

    Get PDF
    How do skilled synthetic chemists develop such a good intuitive expertise ? Why can we only access such a small amount of the available chemical space — both in terms of the re actions used and the chemical scaffolds we make? We argue here that these seemingly unrelated questions have a common root and are strongly interdependent . We performed a comprehensive analysis of organic reaction parameters dating back to 1771 and discove red that there are several anthropogenic factors that limit the reaction parameters and thus the scop e of synthetic chemistry. Nevertheless, many of the anthropogenic limitations such as the narrow parameter space and the opportunity of the rapid and clear feedback on the progress of reactions appear to be crucial for the acquisition of valid and reliable chemical intuition. In parallel, however, all of these same factors represent limitations for the exploration of available chemistry space and we argue th at these are thus at least partly responsible for limited access to new chemistries. We advocate, therefore, that the present anthropogenic boundaries can be expanded by a more conscious expl oration of “off - road” chemistry that would also extend the intuit ive knowledge of trained chemists

    Evidence-Based Annotation of the Malaria Parasite's Genome Using Comparative Expression Profiling

    Get PDF
    A fundamental problem in systems biology and whole genome sequence analysis is how to infer functions for the many uncharacterized proteins that are identified, whether they are conserved across organisms of different phyla or are phylum-specific. This problem is especially acute in pathogens, such as malaria parasites, where genetic and biochemical investigations are likely to be more difficult. Here we perform comparative expression analysis on Plasmodium parasite life cycle data derived from P. falciparum blood, sporozoite, zygote and ookinete stages, and P. yoelii mosquito oocyst and salivary gland sporozoites, blood and liver stages and show that type II fatty acid biosynthesis genes are upregulated in liver and insect stages relative to asexual blood stages. We also show that some universally uncharacterized genes with orthologs in Plasmodium species, Saccharomyces cerevisiae and humans show coordinated transcription patterns in large collections of human and yeast expression data and that the function of the uncharacterized genes can sometimes be predicted based on the expression patterns across these diverse organisms. We also use a comprehensive and unbiased literature mining method to predict which uncharacterized parasite-specific genes are likely to have roles in processes such as gliding motility, host-cell interactions, sporozoite stage, or rhoptry function. These analyses, together with protein-protein interaction data, provide probabilistic models that predict the function of 926 uncharacterized malaria genes and also suggest that malaria parasites may provide a simple model system for the study of some human processes. These data also provide a foundation for further studies of transcriptional regulation in malaria parasites
    corecore