
Chapter 1
The Spread of the Application
of the Microwave Technique in Organic
Synthesis

Erika Bálint and György Keglevich

Abstract The first chapter summarizes the birth and spread of the application of
the microwave (MW) technique in organic syntheses placing the stress on the
development of the MW equipment. These days professional batch and continuous
flow reactors are available, and the application is knocking at the door of industry.
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These days, the protection of our environment and our health is becoming
increasingly important due to the worldwide spread of green chemistry. According
to the 12 principles of green chemistry [1], preparation and development of
environmentally-friendly and harmless products and technologies are the main
tasks. In this context, the application of the microwave (MW) technique in organic,
inorganic, medicinal, analytical and polymer chemistry has spread fast [2–8].

The first domestic microwave oven was introduced by at the end of 1955, but the
widespread use of these ovens in households occurred during the 1970s and 1980s.
From the middle of 1970s, engineers and researchers started to apply the MW
technique in food processing, in the drying industry, in waste remediation and in
analytical chemistry. In the latter case, this technique has been used for sample
preparation (e.g. digestion, extraction, dissolution, etc.) [9–12]. The first application
of microwave irradiation in chemical synthesis was published in 1986 by the groups
of Gedye and Giguere [13, 14]. Since then, the number of publications in this field
has sharply increased (Fig. 1.1). Most of these publications describe important
acceleration of a wide range of organic chemical reactions, excellent repro-
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ducibility, improved yields and less side reactions compared to conventional
heating.

Early pioneering experiments were performed in domestic MW ovens, where the
irradiation power was controlled generally by on-off cycles of the magnetron, and it
was not possible to monitor the inner temperature in a reliable way, thus the
reactions were not reproducible. The other problems were on the safety issues of
such experiments [15–17]. From the early 2000s, dedicated MW instruments started
appearing in market, which are indeed suitable for performing chemical reactions
under controlled conditions [2, 3, 18]. All commercially available dedicated MW
reactors consist of a MW cavity, magnetic stirrer, sensor probe (IR sensor or fiber
optic probe), and software that enables on-line temperature/pressure control by
regulating the MW power output.

The MW instruments are classified in two types, monomode (single mode) and
multimode MW reactors. The main difference between the two systems is that while
in monomode reactors only one reaction vessel can be irradiated, multimode
reactors may accommodate several vessels simultaneously.

A monomode instrument has a small compact cavity, where the microwave
energy is generated by a single magnetron, and directed through a rectangular
waveguide to the reaction mixture, which is positioned at a maximized energy point
(Fig. 1.2). A highly homogenous energy field of high power intensity is provided,
resulting in exceedingly fast heating rates.

In addition, monomode instruments with a self-tuning circular waveguide are
also available (Fig. 1.3). This cavity features multiple entry points for introducing
the microwave energy into the vessel.

Multimode reactors have larger cavities, in which the microwaves are reflected
from the cavity walls, and distributed in a rather chaotic manner (Fig. 1.4). The
reaction vessels are continuously rotated within the cavity, to provide a steady

Fig. 1.1 The number of publication on MW-assisted synthesis (1986–2015). Web of Science
keyword search on “microwave synthesis”
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Fig. 1.2 The microwave field
distribution in a monomode
reactor [3]

Fig. 1.3 Circular
single-mode cavity [2]

Fig. 1.4 The microwave field
distribution in a multimode
parallel synthesis reactor [3]
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energy distribution. Multimode instruments allow conveniently for parallel syn-
theses or scale-up. These reactors can host different rotors which are used for
parallel reactions in a scale range from several µl up to multi g synthesis in 100 mL
reaction vessels.

There is another type of multimode reactor containing a circular waveguide,
where various modes of the electromagnetic waves interact with the vessel content
at different spots for efficient heating of larger scales (Fig. 1.5). A single few liter
vessel is positioned in the cavity, which provides optimal heating rates for large
volumes due to the relatively high field density (compared to common multimode
microwave oven shown in Fig. 1.4). This kind of multimode reactor is applied for
single-batch scale-up procedure, if up to 2 kg of product is required.

Special MW reactors are also known, where the microwave is combined with
other techniques, such as UV, ultrasound or high pressure systems (e.g. super-
critical reactor) [2].

The scale-up of MW-assisted reactions is of specific interest in many industrial
laboratories. The safety limitations of using large batch reactors have promoted the
development of continuous flow or stopped-flow MW reactors [19, 20]. These
reactors usually comprise three parts, such as the dispensing units for the starting
reagents, the MW cavity and the product collector (Fig. 1.6). The reagents are
pumped using a HPLC pump or even two pumps. The pressure is controlled by a
back-pressure regulator, and the temperature is monitored using a fiber optic sensor
or a built-in IR sensor. Usually, the reactors are made from Pyrex or Teflon. The
efficiency of the continuous flow MW systems can be increased by using parallel
reactors.

Nowadays, there are many types of continuous flow MW reactors, which include
a normal flask or tube [21], a fixed bed turbular coil [22–24], an Ω- or U-shaped
tube [25–28], a filled column [22, 24, 29] (Fig. 1.7), a spiral glass tube [21, 30–32]
(e.g. Emry-type reactor [33] (Fig. 1.8)), a mixed tube [34] (Fig. 1.9) or a capillary
reactor [27, 28, 35–37].

Fig. 1.5 The microwave field
distribution in a multimode
single-batch reactor (top
view)
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Fig. 1.6 Schematic sketch of continuous flow MW reactors

Fig. 1.7 Filled column
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There is also a continuous equipment to carry out MW-assisted reaction of solid
components (Fig. 1.10) [38, 39].

Fig. 1.8 Emry-type reactor

Fig. 1.9 Mixed tube reactor

Fig. 1.10 Continuous microwave reactor for solid-phase reaction

6 E. Bálint and G. Keglevich



Continuous isothermal MW reactor is also known, which is suitable for
implementation of isothermal reactions (Fig. 1.11) [40].

Several MW-assisted continuous flow accomplishments on g or kg scale have
been reported in the literature [19, 41–54]. Their capacity may reach 500 kg product
per day [55].

1.1 Conclusions

In summary, the revolutionary spread of the MW technique resulted in an enormous
development in organic chemistry. The appearance of dedicated MW reactors was a
“sine qua none” of the new achievements. The mono- and multimode MW batch
reactors make possible laboratory scale syntheses, while suitable continuous flow
reactors even larger scale production.
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