2,500 research outputs found

    Acute alcohol administration dampens central extended amygdala reactivity.

    Get PDF
    Alcohol use is common, imposes a staggering burden on public health, and often resists treatment. The central extended amygdala (EAc)-including the bed nucleus of the stria terminalis (BST) and the central nucleus of the amygdala (Ce)-plays a key role in prominent neuroscientific models of alcohol drinking, but the relevance of these regions to acute alcohol consumption in humans remains poorly understood. Using a single-blind, randomized-groups design, multiband fMRI data were acquired from 49 social drinkers while they performed a well-established emotional faces paradigm after consuming either alcohol or placebo. Relative to placebo, alcohol significantly dampened reactivity to emotional faces in the BST. To rigorously assess potential regional differences in activation, data were extracted from unbiased, anatomically predefined regions of interest. Analyses revealed similar levels of dampening in the BST and Ce. In short, alcohol transiently reduces reactivity to emotional faces and it does so similarly across the two major divisions of the human EAc. These observations reinforce the translational relevance of addiction models derived from preclinical work in rodents and provide new insights into the neural systems most relevant to the consumption of alcohol and to the initial development of alcohol abuse in humans

    A Comment on the Strong Interactions of Color-Neutral Technibaryons

    Full text link
    We estimate the cross section for the scattering of a slow, color-neutral technibaryon made of colored constituents with nuclei. We find a cross section of order A2 10−45A^2\ 10^{-45} cm2^2, where AA is the atomic number of the nucleus. Even if technibaryons constitute the dark matter in the galactic halo, this is too small to be detected in future underground detectors.Comment: 6 pages, BUHEP-92-36 and UCSD/PTH 92-3

    Middle pleistocene glaciation in Patagonia dated by cosmogenic-nuclide measurements on outwash gravels

    Get PDF
    The well-preserved glacial record in Argentine Patagonia offers a ~ 1 Ma archive of terrestrial climate extremes in southern South America. These glacial deposits remain largely undated beyond the range of radiocarbon dating at ca. 40 ka. Dating old glacial deposits (> several 105 a) by cosmogenic surface exposure methods is problematic because of the uncertainty in moraine degradation and boulder erosion rates. Here, we show that cobbles on outwash terraces can reliably date ‘old’ glacial deposits in the Lago Pueyrredón valley, 47.5° S, Argentina. Favorable environmental conditions (e.g., aridity and strong winds) have enabled continuous surface exposure of cobbles and preservation of outwash terraces. The data demonstrate that nuclide inheritance is negligible and we therefore use the oldest surface cobbles to date the deposit. 10Be concentrations in outwash cobbles reveal a major glacial advance at ca. 260 ka, concurrent with Marine Isotope Stage 8 (MIS 8) and dust peaks in Antarctic ice cores. A 10Be concentration depth-profile in the outwash terrace supports the age and suggests a low terrace erosion rate of ca. 0.5 mm ka− 1. We compare these data to exposure ages obtained from associated moraines and find that surface boulders underestimate the age of the glaciation by ~ 100 ka; thus the oldest boulders in this area do not date closely moraine deposition. The 10Be concentration in moraine cobbles help to constrain moraine degradation rates. These data together with constraints from measured 26Al/10Be ratios suggest that all moraine boulders were likely exhumed after original deposition. We determine the local Last Glacial Maximum (LGM) occurred at ~ 27–25 ka, consistent with the maximum LGM in other parts of Patagonia

    STAT3 activation impairs the stability of Th9 cells

    Get PDF
    Th9 cells regulate multiple immune responses including immunity to pathogens and tumors, allergic inflammation, and autoimmunity. Despite ongoing research into Th9 development and function, little is known about the stability of the Th9 phenotype. In this report we demonstrate that IL-9 production is progressively lost in Th9 cultures over several rounds of differentiation. The loss of IL-9 is not due to an outgrowth of cells that do not secrete IL-9, as purified IL-9 secretors demonstrate the same loss of IL-9 in subsequent rounds of differentiation. The loss of IL-9 production correlates with increases in phospho-STAT3 levels within the cell, and the production of IL-10. STAT3-deficient Th9 cells have increased IL-9 production that is maintained for longer in culture than IL-9 in control cultures. IL-10 is responsible for STAT3 activation during the first round of differentiation, and contributes to instability in subsequent rounds of culture. Together, our results indicate that environmental cues dictate the instability of the Th9 phenotype, and suggest approaches to enhance Th9 activity in beneficial immune responses

    Attosecond Time-Domain Measurement of Core-Level-Exciton Decay in Magnesium Oxide.

    Get PDF
    Excitation of ionic solids with extreme ultraviolet pulses creates localized core-level excitons, which in some cases couple strongly to the lattice. Here, core-level-exciton states of magnesium oxide are studied in the time domain at the Mg L_{2,3} edge with attosecond transient reflectivity spectroscopy. Attosecond pulses trigger the excitation of these short-lived quasiparticles, whose decay is perturbed by time-delayed near-infrared pulses. Combined with a few-state theoretical model, this reveals that the infrared pulse shifts the energy of bright (dipole-allowed) core-level-exciton states as well as induces features arising from dark core-level excitons. We report coherence lifetimes for the two lowest core-level excitons of 2.3±0.2 and 1.6±0.5  fs and show that these are primarily a consequence of strong exciton-phonon coupling, disclosing the drastic influence of structural effects in this ultrafast relaxation process

    Microscopic Entropy of N=2 Extremal Black Holes

    Get PDF
    String theory is used to compute the microscopic entropy for several examples of black holes in compactifications with N=2N=2 supersymmetry. Agreement with the Bekenstein-Hawking entropy and the moduli-independent N=2N=2 area formula is found in all cases.Comment: 9 pages, no figures, uses harvma

    Effective Field Theory, Black Holes, and the Cosmological Constant

    Full text link
    Bekenstein has proposed the bound S < pi M_P^2 L^2 on the total entropy S in a volume L^3. This non-extensive scaling suggests that quantum field theory breaks down in large volume. To reconcile this breakdown with the success of local quantum field theory in describing observed particle phenomenology, we propose a relationship between UV and IR cutoffs such that an effective field theory should be a good description of Nature. We discuss implications for the cosmological constant problem. We find a limitation on the accuracy which can be achieved by conventional effective field theory: for example, the minimal correction to (g-2) for the electron from the constrained IR and UV cutoffs is larger than the contribution from the top quark.Comment: 5 pages, no figures minor clarifications, refs adde

    A variable near-infrared counterpart to the neutron-star low-mass X-ray binary 4U 1705-440

    Get PDF
    We report the discovery of a near-infrared (nIR) counterpart to the persistent neutron-star low-mass X-ray binary 4U 1705-440, at a location consistent with its recently determined Chandra X-ray position. The nIR source is highly variable, with K_s-band magnitudes varying between 15.2 and 17.3 and additional J- and H-band observations revealing color variations. A comparison with contemporaneous X-ray monitoring observations shows that the nIR brightness correlates well with X-ray flux and X-ray spectral state. We also find possible indications for a change in the slope of the nIR/X-ray flux relation between different X-ray states. We discuss and test various proposed mechanisms for the nIR emission from neutron-star low-mass X-ray binaries and conclude that the nIR emission in 4U 1705-440 is most likely dominated by X-ray heating of the outer accretion disk and the secondary star.Comment: Accepted for publication in Ap
    • …
    corecore