210 research outputs found

    Expression of Cytosolic Peroxiredoxins in Plasmodium Berghei Ookinetes is Regulated by Environmental Factors in the Mosquito bloodmeal

    Get PDF
    The Plasmodium ookinete develops over several hours in the bloodmeal of its mosquito vector where it is exposed to exogenous stresses, including cytotoxic reactive oxygen species (ROS). How the parasite adapts to these challenging conditions is not well understood. We have systematically investigated the expression of three cytosolic antioxidant proteins, thioredoxin-1 (Trx-1), peroxiredoxin-1 (TPx-1), and 1-Cys peroxiredoxin (1-Cys Prx), in developing ookinetes of the rodent parasite Plasmodium berghei under various growth conditions. Transcriptional profiling showed that tpx-1 and 1-cys prx but not trx-1 are more strongly upregulated in ookinetes developing in the mosquito bloodmeal when compared to ookinetes growing under culture conditions. Confocal immunofluorescence imaging revealed comparable expression patterns on the corresponding proteins. 1-Cys Prx in particular exhibited strong expression in mosquito-derived ookinetes but was not detectable in cultured ookinetes. Furthermore, ookinetes growing in culture upregulated tpx-1 and 1-cys prx when challenged with exogenous ROS in a dose-dependent fashion. This suggests that environmental factors in the mosquito bloodmeal induce upregulation of cytosolic antioxidant proteins in Plasmodium ookinetes. We found that in a parasite line lacking TPx-1 (TPx-1KO), expression of 1-Cys Prx occurred significantly earlier in mosquito-derived TPx-1KO ookinetes when compared to wild type (WT) ookinetes. The protein was also readily detectable in cultured TPx-1KO ookinetes, indicating that 1-Cys Prx at least in part compensates for the loss of TPx-1 in vivo. We hypothesize that this dynamic expression of the cytosolic peroxiredoxins reflects the capacity of the developing Plasmodium ookinete to rapidly adapt to the changing conditions in the mosquito bloodmeal. This would significantly increase its chances of survival, maturation and subsequent escape. Our results also emphasize that environmental conditions must be taken into account when investigating Plasmodium-mosquito interactions

    The glutathione biosynthetic pathway of Plasmodium is essential for mosquito transmission

    Get PDF
    1Infection of red blood cells (RBC) subjects the malaria parasite to oxidative stress. Therefore, efficient antioxidant and redox systems are required to prevent damage by reactive oxygen species. Plasmodium spp. have thioredoxin and glutathione (GSH) systems that are thought to play a major role as antioxidants during blood stage infection. In this report, we analyzed a critical component of the GSH biosynthesis pathway using reverse genetics. Plasmodium berghei parasites lacking expression of gamma-glutamylcysteine synthetase (γ-GCS), the rate limiting enzyme in de novo synthesis of GSH, were generated through targeted gene disruption thus demonstrating, quite unexpectedly, that γ-GCS is not essential for blood stage development. Despite a significant reduction in GSH levels, blood stage forms of pbggcs− parasites showed only a defect in growth as compared to wild type. In contrast, a dramatic effect on development of the parasites in the mosquito was observed. Infection of mosquitoes with pbggcs− parasites resulted in reduced numbers of stunted oocysts that did not produce sporozoites. These results have important implications for the design of drugs aiming at interfering with the GSH redox-system in blood stages and demonstrate that de novo synthesis of GSH is pivotal for development of Plasmodium in the mosquito

    Characterization of a protozoan Phosducin-like protein-3 (PhLP-3) reveals conserved redox activity

    Get PDF
    We recently identified three novel thioredoxin-like genes in the genome of the protozoan parasite Plasmodium that belong to the Phosducin-like family of proteins (PhLP). PhLPs are small cytosolic proteins hypothesized to function in G-protein signaling and protein folding. Although PhLPs are highly conserved in eukaryotes from yeast to mammals, only a few representatives have been experimentally characterized to date. In addition, while PhLPs contain a thioredoxin domain, they lack a CXXC motif, a strong indicator for redox activity, and it is unclear whether members of the PhLP family are enzymatically active. Here, we describe PbPhLP-3 as the first phosducin-like protein of a protozoan organism, Plasmodium berghei. Initial transcription analysis revealed continuous low-level expression of pbphlp-3 throughout the complex Plasmodium life cycle. Attempts to knockout pbphlp-3 in P. berghei did not yield live parasites, suggesting an essential role for the gene in Plasmodium. We cloned, expressed and purified PbPhLP-3 and determined that the recombinant protein is redox active in vitro in a thioredoxin-coupled redox assay. It also has the capacity to reduce the organic compound tert-Butyl hydroperoxide (TBHP) in vitro, albeit at low efficiency. Sequence analysis, structural modeling, and site-directed mutagenesis revealed a conserved cysteine in the thioredoxin domain to be the redox active residue. Lastly, we provide evidence that recombinant human PhLP-3 exhibits redox activity similar to that of PbPhLP-3 and suggest that redox activity may be conserved in PhLP-3 homologs of other species. Our data provide new insight into the function of PhLP-3, which is hypothesized to act as co-chaperones in the folding and regulation of cytoskeletal proteins. We discuss the potential implications of PhLP-3 as a thioredoxin-target protein and possible links between the cellular redox network and the eukaryotic protein folding machinery

    RNA expression of TLR10 in normal equine tissues

    Get PDF
    Background: Toll like receptors are one of the major innate immune system pathogen recognition systems. There is little data on the expression of the TLR10 member of this family in the horse. Results: This paper describes the genetic structure of the Equine TLR10 gene and its RNA expression in a range of horse tissues. It describes the phylogenetic analysis of the Equine TLR1,6,10,2 annotations in the horse genome, firmly identifying them in their corresponding gene clades compared to other species and firmly placing the horse gene with other TLR10 genes from odd-toed ungulates. Additional 3’ transcript extensions to that annotated for TLR10 in the horse genome have been identified by analysis of RNAseq data. RNA expression of the equine TLR10 gene was highest in peripheral blood mononucleocytes and lymphoid tissue (lymph nodes and spleen), however some expression was detected in all tissues tested (jejunum, caudal mesenteric lymph nodes, bronchial lymph node, spleen, lung, colon, kidney and liver). Additional data on RNAseq expression of all equine TLR genes (1–4 and 6–10) demonstrate higher expression of TLR4 than other equine TLRs in all tissues. Conclusion: The equine TLR10 gene displays significant homology to other mammalian TLR10 genes and could be reasonably assumed to have similar fuctions. Its RNA level expression is higher in resting state PBMCs in horses than in other tissues

    NMR assignments of oxidised thioredoxin from Plasmodium falciparum

    Get PDF
    During its life cycle, the malaria parasite Plasmodium falciparum is found intracellular to human erythrocytes, where its survival and ability to multiply critically depends on the control of the environment redox state. Thioredoxin is a small protein containing 104 amino acids that is part of the parasite specific redox system. During the catalytic cycle it alternates between a reduced and oxidised form. Here we report the complete resonance assignment of Plasmodium falciparum thioredoxin in its oxidized form by heteronuclear multidimensional spectroscopy. The obtained chemical shifts differ significantly from those reported earlier for this protein in its reduced stat

    Family Firms and Firm Performance: Evidence from Japan

    Get PDF
    Corrigendum: Nature Structural and Molecular Biology 16 (12), 1331 (2009) doi:10.1038/nsmb1209-1331bInternational audienceThioredoxins (Trxs) are oxidoreductase enzymes, present in all organisms, that catalyze the reduction of disulfide bonds in proteins. By applying a calibrated force to a substrate disulfide, the chemical mechanisms of Trx catalysis can be examined in detail at the single-molecule level. Here we use single-molecule force-clamp spectroscopy to explore the chemical evolution of Trx catalysis by probing the chemistry of eight different Trx enzymes. All Trxs show a characteristic Michaelis-Menten mechanism that is detected when the disulfide bond is stretched at low forces, but at high forces, two different chemical behaviors distinguish bacterial-origin from eukaryotic-origin Trxs. Eukaryotic-origin Trxs reduce disulfide bonds through a single-electron transfer reaction (SET), whereas bacterial-origin Trxs show both nucleophilic substitution (SN2) and SET reactions. A computational analysis of Trx structures identifies the evolution of the binding groove as an important factor controlling the chemistry of Trx catalysis

    Depletion of Plasmodium berghei Plasmoredoxin Reveals a Non-Essential Role for Life Cycle Progression of the Malaria Parasite

    Get PDF
    Proliferation of the pathogenic Plasmodium asexual blood stages in host erythrocytes requires an exquisite capacity to protect the malaria parasite against oxidative stress. This function is achieved by a complex antioxidant defence system composed of redox-active proteins and low MW antioxidants. Here, we disrupted the P. berghei plasmoredoxin gene that encodes a parasite-specific 22 kDa member of the thioredoxin superfamily. The successful generation of plasmoredoxin knockout mutants in the rodent model malaria parasite and phenotypic analysis during life cycle progression revealed a non-vital role in vivo. Our findings suggest that plasmoredoxin fulfils a specialized and dispensable role for Plasmodium and highlights the need for target validation to inform drug development strategies

    Insertion of an Esterase Gene into a Specific Locust Pathogen (Metarhizium acridum) Enables It to Infect Caterpillars

    Get PDF
    An enduring theme in pathogenic microbiology is poor understanding of the mechanisms of host specificity. Metarhizium is a cosmopolitan genus of invertebrate pathogens that contains generalist species with broad host ranges such as M. robertsii (formerly known as M. anisopliae var. anisopliae) as well as specialists such as the acridid-specific grasshopper pathogen M. acridum. During growth on caterpillar (Manduca sexta) cuticle, M. robertsii up-regulates a gene (Mest1) that is absent in M. acridum and most other fungi. Disrupting M. robertsii Mest1 reduced virulence and overexpression increased virulence to caterpillars (Galleria mellonella and M. sexta), while virulence to grasshoppers (Melanoplus femurrubrum) was unaffected. When Mest1 was transferred to M. acridum under control of its native M. robertsii promoter, the transformants killed and colonized caterpillars in a similar fashion to M. robertsii. MEST1 localized exclusively to lipid droplets in M. robertsii conidia and infection structures was up-regulated during nutrient deprivation and had esterase activity against lipids with short chain fatty acids. The mobilization of stored lipids was delayed in the Mest1 disruptant mutant. Overall, our results suggest that expression of Mest1 allows rapid hydrolysis of stored lipids, and promotes germination and infection structure formation by M. robertsii during nutrient deprivation and invasion, while Mest1 expression in M. acridum broadens its host range by bypassing the regulatory signals found on natural hosts that trigger the mobilization of endogenous nutrient reserves. This study suggests that speciation in an insect pathogen could potentially be driven by host shifts resulting from changes in a single gene

    Relaxation of Selective Constraints Causes Independent Selenoprotein Extinction in Insect Genomes

    Get PDF
    BACKGROUND: Selenoproteins are a diverse family of proteins notable for the presence of the 21st amino acid, selenocysteine. Until very recently, all metazoan genomes investigated encoded selenoproteins, and these proteins had therefore been believed to be essential for animal life. Challenging this assumption, recent comparative analyses of insect genomes have revealed that some insect genomes appear to have lost selenoprotein genes. METHODOLOGY/PRINCIPAL FINDINGS: In this paper we investigate in detail the fate of selenoproteins, and that of selenoprotein factors, in all available arthropod genomes. We use a variety of in silico comparative genomics approaches to look for known selenoprotein genes and factors involved in selenoprotein biosynthesis. We have found that five insect species have completely lost the ability to encode selenoproteins and that selenoprotein loss in these species, although so far confined to the Endopterygota infraclass, cannot be attributed to a single evolutionary event, but rather to multiple, independent events. Loss of selenoproteins and selenoprotein factors is usually coupled to the deletion of the entire no-longer functional genomic region, rather than to sequence degradation and consequent pseudogenisation. Such dynamics of gene extinction are consistent with the high rate of genome rearrangements observed in Drosophila. We have also found that, while many selenoprotein factors are concomitantly lost with the selenoproteins, others are present and conserved in all investigated genomes, irrespective of whether they code for selenoproteins or not, suggesting that they are involved in additional, non-selenoprotein related functions. CONCLUSIONS/SIGNIFICANCE: Selenoproteins have been independently lost in several insect species, possibly as a consequence of the relaxation in insects of the selective constraints acting across metazoans to maintain selenoproteins. The dispensability of selenoproteins in insects may be related to the fundamental differences in antioxidant defense between these animals and other metazoans.The work described here is funded by grants from the Spanish Ministery of Education and Science and from the BioSapiens European Network of Excellence to RG. CEC is reciepient of a pre-doctoral fellowship from the Spanish Ministery of Education and Science
    • …
    corecore