274 research outputs found

    Commencement of the Class of 2015

    Get PDF
    Let me conclude my remarks this morning with a quote from Countee Cullen, a poet of the Harlem Renaissance who graduated from NYU, then Harvard University. He said, “For we must be one thing or the other, an asset or a liability, the sinew in your wing to help you soar, or the chain to bind you to earth” (Countee Cullen). Class of 2015, I ask: Will you be an asset or a liability? Class of 2015, will you give back and pay it forward? Class of 2015, will you invest in this world? Will you advance the human condition? Will you create opportunities for others? Will you make a positive impact? Will you help people and our planet? By saying yes, by saying “we will”—you will soar! Ladies and gentlemen, I present you the Class of 2015—the Class that will continue to soar! Thank you. And now, it brings me great pleasure and it is my great honor to accept the Class of 2015. By the authority vested in me as President of the Illinois Mathematics and Science Academy and on behalf of the Board of Trustees and the State of Illinois, I accept these students as graduates of IMSA and proclaim them as worthy to receive their Diplomas and Medallions. JosĂ© M. Torres, Ph.D

    Screening the medicines for Malaria Venture "Malaria Box" against the Plasmodium falciparum aminopeptidases, M1, M17 and M18

    Get PDF
    Malaria is a parasitic disease that remains a global health burden. The ability of the parasite to rapidly develop resistance to therapeutics drives an urgent need for the delivery of new drugs. The Medicines for Malaria Venture have compounds known for their antimalarial ac- tivity, but not necessarily the molecular targets. In this study, we assess the ability of the “MMV 400” compounds to inhibit the activity of three metalloaminopeptidases from Plasmo- dium falciparum, PfA-M1, PfA-M17 and PfM18 AAP. We have developed a multiplex assay system to allow rapid primary screening of compounds against all three metalloaminopepti- dases, followed by detailed analysis of promising compounds. Our results show that there were no PfM18AAP inhibitors, whereas two moderate inhibitors of the neutral aminopepti- dases PfA-M1 and PfA-M17 were identified. Further investigation through structure-activity relationship studies and molecular docking suggest that these compounds are competitive inhibitors with novel binding mechanisms, acting through either non-classical zinc coordina- tion or independently of zinc binding altogether. Although it is unlikely that inhibition of PfA- M1 and/or PfA-M17 is the primary mechanism responsible for the antiplasmodial activity re- ported for these compounds, their detailed characterization, as presented in this work, pave the way for their further optimization as a novel class of dual PfA-M1/PfA-M17 inhibitors uti- lising non-classical zinc binding groups

    Microvascular engineering in perfusion culture: immunohistochemistry and CLSM findings

    Get PDF
    BACKGROUND: One of the most challenging problems in tissue engineering is the establishment of vascular supply. A possible approach might be the engineering of microvasculature in vitro and the supply by engineered feeder vessels. METHODS: An in vitro model for a small-diameter vessel was developed and made from adipose tissue stromal cells and human umbilical vein endothelial cells in a tube-like gelatine scaffold. The number of "branches" emerging from the central lumen and the morphology of the central lumen of the vessel equivalent were assessed after 16 days of either pulsatile perfusion culture or culture in rotating containers by evaluation of immunohistochemically stained sections (n = 6 pairs of cultures). Intramural capillary network formation was demonstrated in five experiments with confocal laser scanning microscopy. RESULTS: Perfused specimens showed a round or oval lumen lined by a single layer of endothelial cells, whereas following rotation culture the lumen tended to collapse. Confocal laser scanning microscopy showed more extended network formation in perfused specimens as compared to specimens after rotation culture. Partially highly interconected capillary-like networks were imaged which showed orientation around the central lumen. Perfused specimens exhibited significantly more branches emerging from the central lumen. There were, however, hardly any capillary branches crossing the whole vessel wall. CONCLUSION: Pulsatile perfusion supports the development of vascular networks with physiological appearance. Advances in reactor development, acquisition of functional data and imaging procedures are however necessary in order to attain the ultimate goal of a fully functional engineered supplying vessel

    Analytic philosophy for biomedical research: the imperative of applying yesterday's timeless messages to today's impasses

    Get PDF
    The mantra that "the best way to predict the future is to invent it" (attributed to the computer scientist Alan Kay) exemplifies some of the expectations from the technical and innovative sides of biomedical research at present. However, for technical advancements to make real impacts both on patient health and genuine scientific understanding, quite a number of lingering challenges facing the entire spectrum from protein biology all the way to randomized controlled trials should start to be overcome. The proposal in this chapter is that philosophy is essential in this process. By reviewing select examples from the history of science and philosophy, disciplines which were indistinguishable until the mid-nineteenth century, I argue that progress toward the many impasses in biomedicine can be achieved by emphasizing theoretical work (in the true sense of the word 'theory') as a vital foundation for experimental biology. Furthermore, a philosophical biology program that could provide a framework for theoretical investigations is outlined

    Viral Kinetics Suggests a Reconciliation of the Disparate Observations of the Modulation of Claudin-1 Expression on Cells Exposed to Hepatitis C Virus

    Get PDF
    The tight junction protein claudin-1 (CLDN1) is necessary for hepatitis C virus (HCV) entry into target cells. Recent studies have made disparate observations of the modulation of the expression of CLDN1 on cells following infection by HCV. In one study, the mean CLDN1 expression on cells exposed to HCV declined, whereas in another study HCV infected cells showed increased CLDN1 expression compared to uninfected cells. Consequently, the role of HCV in modulating CLDN1 expression, and hence the frequency of cellular superinfection, remains unclear. Here, we present a possible reconciliation of these disparate observations. We hypothesized that viral kinetics and not necessarily HCV-induced receptor modulation underlies these disparate observations. To test this hypothesis, we constructed a mathematical model of viral kinetics in vitro that mimicked the above experiments. Model predictions provided good fits to the observed evolution of the distribution of CLDN1 expression on cells following exposure to HCV. Cells with higher CLDN1 expression were preferentially infected and outgrown by cells with lower CLDN1 expression, resulting in a decline of the mean CLDN1 expression with time. At the same time, because the susceptibility of cells to infection increased with CLDN1 expression, infected cells tended to have higher CLDN1 expression on average than uninfected cells. Our study thus presents an explanation of the disparate observations of CLDN1 expression following HCV infection and points to the importance of considering viral kinetics in future studies of receptor expression on cells exposed to HCV

    Pyrethroid resistance in Anopheles gambiae leads to increased susceptibility to the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Entomopathogenic fungi are being investigated as a new mosquito control tool because insecticide resistance is preventing successful mosquito control in many countries, and new methods are required that can target insecticide-resistant malaria vectors. Although laboratory studies have previously examined the effects of entomopathogenic fungi against adult mosquitoes, most application methods used cannot be readily deployed in the field. Because the fungi are biological organisms it is important to test potential field application methods that will not adversely affect them. The two objectives of this study were to investigate any differences in fungal susceptibility between an insecticide-resistant and insecticide-susceptible strain of <it>Anopheles gambiae sensu stricto</it>, and to test a potential field application method with respect to the viability and virulence of two fungal species</p> <p>Methods</p> <p>Pieces of white polyester netting were dipped in <it>Metarhizium anisopliae </it>ICIPE-30 or <it>Beauveria bassiana </it>IMI391510 mineral oil suspensions. These were kept at 27 ± 1°C, 80 ± 10% RH and the viability of the fungal conidia was recorded at different time points. Tube bioassays were used to infect insecticide-resistant (VKPER) and insecticide-susceptible (SKK) strains of <it>An. gambiae s.s</it>., and survival analysis was used to determine effects of mosquito strain, fungus species or time since fungal treatment of the net.</p> <p>Results</p> <p>The resistant VKPER strain was significantly more susceptible to fungal infection than the insecticide-susceptible SKK strain. Furthermore, <it>B. bassiana </it>was significantly more virulent than <it>M. anisopliae </it>for both mosquito strains, although this may be linked to the different viabilities of these fungal species. The viability of both fungal species decreased significantly one day after application onto polyester netting when compared to the viability of conidia remaining in suspension.</p> <p>Conclusions</p> <p>The insecticide-resistant mosquito strain was susceptible to both species of fungus indicating that entomopathogenic fungi can be used in resistance management and integrated vector management programmes to target insecticide-resistant mosquitoes. Although fungal viability significantly decreased when applied to the netting, the effectiveness of the fungal treatment at killing mosquitoes did not significantly deteriorate. Field trials over a longer trial period need to be carried out to verify whether polyester netting is a good candidate for operational use, and to see if wild insecticide-resistant mosquitoes are as susceptible to fungal infection as the VKPER strain.</p

    Structural determinants of the SINE B2 element embedded in the long non-coding RNA activator of translation AS Uchl1

    Get PDF
    Pervasive transcription of mammalian genomes leads to a previously underestimated level of complexity in gene regulatory networks. Recently, we have identified a new functional class of natural and synthetic antisense long non-coding RNAs (lncRNA) that increases translation of partially overlapping sense mRNAs. These molecules were named SINEUPs, as they require an embedded inverted SINE B2 element for their UP-regulation of translation. Mouse AS Uchl1 is the representative member of natural SINEUPs. It was originally discovered for its role in increasing translation of Uchl1 mRNA, a gene associated with neurodegenerative diseases. Here we present the secondary structure of the SINE B2 Transposable Element (TE) embedded in AS Uchl1. We find that specific structural regions, containing a short hairpin, are required for the ability of AS Uchl1 RNA to increase translation of its target mRNA. We also provide a high-resolution structure of the relevant hairpin, based on NMR observables. Our results highlight the importance of structural determinants in embedded TEs for their activity as functional domains in lncRNAs

    Analysis of the human monocyte-derived macrophage transcriptome and response to lipopolysaccharide provides new insights into genetic aetiology of inflammatory bowel disease

    Get PDF
    The FANTOM5 consortium utilised cap analysis of gene expression (CAGE) to provide an unprecedented insight into transcriptional regulation in human cells and tissues. In the current study, we have used CAGE-based transcriptional profiling on an extended dense time course of the response of human monocyte-derived macrophages grown in macrophage colony-stimulating factor (CSF1) to bacterial lipopolysaccharide (LPS). We propose that this system provides a model for the differentiation and adaptation of monocytes entering the intestinal lamina propria. The response to LPS is shown to be a cascade of successive waves of transient gene expression extending over at least 48 hours, with hundreds of positive and negative regulatory loops. Promoter analysis using motif activity response analysis (MARA) identified some of the transcription factors likely to be responsible for the temporal profile of transcriptional activation. Each LPS-inducible locus was associated with multiple inducible enhancers, and in each case, transient eRNA transcription at multiple sites detected by CAGE preceded the appearance of promoter-associated transcripts. LPS-inducible long non-coding RNAs were commonly associated with clusters of inducible enhancers. We used these data to re-examine the hundreds of loci associated with susceptibility to inflammatory bowel disease (IBD) in genome-wide association studies. Loci associated with IBD were strongly and specifically (relative to rheumatoid arthritis and unrelated traits) enriched for promoters that were regulated in monocyte differentiation or activation. Amongst previously-identified IBD susceptibility loci, the vast majority contained at least one promoter that was regulated in CSF1-dependent monocyte-macrophage transitions and/or in response to LPS. On this basis, we concluded that IBD loci are strongly-enriched for monocyte-specific genes, and identified at least 134 additional candidate genes associated with IBD susceptibility from reanalysis of published GWA studies. We propose that dysregulation of monocyte adaptation to the environment of the gastrointestinal mucosa is the key process leading to inflammatory bowel disease

    Bats in the anthropogenic matrix: Challenges and opportunities for the conservation of chiroptera and their ecosystem services in agricultural landscapes

    Get PDF
    Intensification in land-use and farming practices has had largely negative effects on bats, leading to population declines and concomitant losses of ecosystem services. Current trends in land-use change suggest that agricultural areas will further expand, while production systems may either experience further intensification (particularly in developing nations) or become more environmentally friendly (especially in Europe). In this chapter, we review the existing literature on how agricultural management affects the bat assemblages and the behavior of individual bat species, as well as the literature on provision of ecosystem services by bats (pest insect suppression and pollination) in agricultural systems. Bats show highly variable responses to habitat conversion, with no significant change in species richness or measures of activity or abundance. In contrast, intensification within agricultural systems (i.e., increased agrochemical inputs, reduction of natural structuring elements such as hedges, woods, and marshes) had more consistently negative effects on abundance and species richness. Agroforestry systems appear to mitigate negative consequences of habitat conversion and intensification, often having higher abundances and activity levels than natural areas. Across biomes, bats play key roles in limiting populations of arthropods by consuming various agricultural pests. In tropical areas, bats are key pollinators of several commercial fruit species. However, these substantial benefits may go unrecognized by farmers, who sometimes associate bats with ecosystem disservices such as crop raiding. Given the importance of bats for global food production, future agricultural management should focus on “wildlife-friendly” farming practices that allow more bats to exploit and persist in the anthropogenic matrix so as to enhance provision of ecosystem services. Pressing research topics include (1) a better understanding of how local-level versus landscape-level management practices interact to structure bat assemblages, (2) the effects of new pesticide classes and GM crops on bat populations, and (3) how increased documentation and valuation of the ecosystem services provided by bats could improve attitudes of producers toward their conservation
    • 

    corecore