16 research outputs found

    Correlation Analysis between AOD and Cloud Parameters to Study Their Relationship over China Using MODIS Data (2003–2013): Impact on Cloud Formation and Climate Change

    No full text
    In the present study, we examined the spatial and temporal variations in aerosol optical depth (AOD) at 550 nm and its relationship with various cloud parameters derived from the Moderate resolution Imaging Spectroradiometer (MODIS) sensor onboard Terra satellite. The data have been analyzed for the period of 10-years between March 2003 and February 2013 over 12 major cities in China. The results revealed that high AOD noticed over low latitude regions influenced with high anthropogenic activities and the low AOD observed for the high altitude and mountainous areas since AOD accounts for the slant path which reduces the aerosol emissions. Also the aerosol variations in the atmosphere are complicated by several factors in emissions (natural and anthropogenic) as well as stagnant synoptic meteorology. From the temporal studies, it is clear that the maximum AOD found during summer followed by spring and autumn with a minimum AOD in winter season for all the regions of study in China. Further, we studied the relationship between AOD versus water vapo

    Interdecadal Changes in Aerosol Optical Depth over Pakistan Based on the MERRA-2 Reanalysis Data during 1980–2018

    No full text
    The spatiotemporal evolution and trends in aerosol optical depth (AOD) over environmentally distinct regions in Pakistan are investigated for the period 1980–2018. The AOD data for this period was obtained from the Modern-era retrospective analysis for research and applications, version 2 (MERRA-2) reanalysis atmospheric products, together with the Moderate-resolution imaging spectroradiometer (MODIS) retrievals. The climatology of AODMERRA-2 is analyzed in three different contexts: the entire study domain (Pakistan), six regions within the domain, and 12 cities chosen from the entire study domain. The time-series analysis of the MODIS and MERRA-2 AOD data shows similar patterns in individual cities. The AOD and its seasonality vary strongly across Pakistan, with the lowest (0.05 ± 0.04) and highest (0.40 ± 0.06) in the autumn and summer seasons over the desert and the coastal regions, respectively. During the study period, the annual AOD trend increased between 0.002 and 0.012 year−1. The increase of AOD is attributed to an increase in population and emissions from natural and/or anthropogenic sources. A general increase in the annual AOD over the central to lower Indus Basin is ascribed to the large contribution of dust particles from the desert. During winter and spring, a significant decrease in the AOD was observed in the northern regions of Pakistan. The MERRA-2 and MODIS trends (2002–2018) were compared, and the results show visible differences between the AOD datasets due to theuseof different versions and collection methods. Overall, the present study provides insight into the regional differences of AOD and its trends with the pronounced seasonal behavior across Pakistan

    Effect of foliar spray application of zinc oxide nanoparticles on quantitative, nutritional, and physiological parameters of foxtail millet (Setaria italica L.) under field conditions

    Get PDF
    It has been shown that the foliar application of inorganic nano-materials on cereal plants during their growth cycle enhances the rate of plant productivity by providing a micro-nutrient source. We therefore studied the effects of foliarly applied ZnO nanoparticles (ZnO NPs) on Setaria italica L. foxtail millet's quantitative, nutritional, and physiological parameters. Scanning electron microscopy showed that the ZnO NPs have an average particle size under 20 nm and dominant spherically shaped morphology. Energy dispersive X-ray spectrometry then confirmed ZnO NP homogeneity, and X-ray diffraction verified their high crystalline and wurtzite-structure symmetry. Although plant height, thousand grain weight, and grain yield quantitative parameters did not differ statistically between ZnO NP-treated and untreated plants, the ZnO NP-treated plant grains had significantly higher oil and total nitrogen contents and significantly lower crop water stress index (CWSI). This highlights that the slow-releasing nano-fertilizer improves plant physiological properties and various grain nutritional parameters, and its application is therefore especially beneficial for progressive nanomaterial-based industries.Web of Science911art. no. 155

    Interdecadal Changes in Aerosol Optical Depth over Pakistan Based on the MERRA-2 Reanalysis Data during 1980–2018

    No full text
    The spatiotemporal evolution and trends in aerosol optical depth (AOD) over environmentally distinct regions in Pakistan are investigated for the period 1980–2018. The AOD data for this period was obtained from the Modern-era retrospective analysis for research and applications, version 2 (MERRA-2) reanalysis atmospheric products, together with the Moderate-resolution imaging spectroradiometer (MODIS) retrievals. The climatology of AODMERRA-2 is analyzed in three different contexts: the entire study domain (Pakistan), six regions within the domain, and 12 cities chosen from the entire study domain. The time-series analysis of the MODIS and MERRA-2 AOD data shows similar patterns in individual cities. The AOD and its seasonality vary strongly across Pakistan, with the lowest (0.05 ± 0.04) and highest (0.40 ± 0.06) in the autumn and summer seasons over the desert and the coastal regions, respectively. During the study period, the annual AOD trend increased between 0.002 and 0.012 year−1. The increase of AOD is attributed to an increase in population and emissions from natural and/or anthropogenic sources. A general increase in the annual AOD over the central to lower Indus Basin is ascribed to the large contribution of dust particles from the desert. During winter and spring, a significant decrease in the AOD was observed in the northern regions of Pakistan. The MERRA-2 and MODIS trends (2002–2018) were compared, and the results show visible differences between the AOD datasets due to theuseof different versions and collection methods. Overall, the present study provides insight into the regional differences of AOD and its trends with the pronounced seasonal behavior across Pakistan

    The Strong Precipitation of the Dry Warm Front Cyclone in Syria and Its Prediction by Data Mining Modeling

    No full text
    The Eastern inland of Syria has a Mediterranean climate in the north and a tropical desert climate in the south, which results in a dry south and wet north climate feature, especially in winter. The circulation dynamics analysis of 16 winter strong precipitation events shows that the key system is the dry and warm front cyclone. In most cases (81–100% of the 16 cases), the moisture content in the northern part of the cyclone is higher than that in the southern part (influenced by the Mediterranean climate zone). The humidity in the middle layer is higher than that near the surface (uplifting of the dry warm front), and the thickness of the wet layer and the vertical ascending layer obviously expands upward (as shown by the satellite cloud top reflection). These characteristics lead to the moisture thermodynamic instability in the eastern part of the cyclone (dry and warm air at low level and wet and cold air at upper level). The cyclone flow transports momentum to the local humid layer of the Mediterranean climate belt and then causes unstable conditions and strong rainfall. Considering the limitations of the Syrian ground station network, the NCEP/CFSR global reanalysis data and MODIS aqua-3 cloud parameter data are used to build a multi-source factor index of winter precipitation from 2002 to 2016. A decision tree prediction model is then established and the factors index is constructed into tree shapes by the nodes and branches through calculating rules of information entropy. The suitable tree shape models are adjusted and selected by an automated training and testing process. The forecast model can classify rainfall with a forecast accuracy of more than 90% for strong rainfall over 30 mm

    The Cross-Border Transport of PM<sub>2.5</sub> from the Southeast Asian Biomass Burning Emissions and Its Impact on Air Pollution in Yunnan Plateau, Southwest China

    No full text
    Southeast Asia is one of the largest biomass burning (BB) regions in the world, and the air pollutants generated by this BB have an important impact on air pollution in southern China. However, the mechanism of the cross-border transport of BB pollutants to neighboring regions is yet to be understood. Based on the MODIS remote sensing products and conventional observation data of meteorology and the environment, the WRF-Chem and FLEXPART-WRF models were used to simulate a typical PM2.5 pollution episode that occurred during 24–26 March 2017 to analyze the mechanism of cross-border transport of BB pollutants over Yunnan Plateau (YP) in southwest China. During this air pollution episode, in conjunction with the flourishing BB activities over the neighboring Indo-China Peninsula (ICP) regions in Southeast Asia, and driven by the southwesterly winds prevailing from the ICP to YP, the cross-border transport of pollutants was observed along the transport pathway with the lifting plateau topography in YP. Based on the proximity to the BB sources in ICP, YP was divided into a source region (SR) and a receptor region (RR) for the cross-border transport, and the negative and positive correlation coefficients (R) between PM2.5 concentrations and wind speeds, respectively, were presented, indicating the different impacts of BB emissions on the two regions. XSBN and Kunming, the representative SR and RR sites in the border and hinterland of YP, respectively, have distinct mechanisms that enhance PM2.5 concentrations of air pollution. The SR site is mainly affected by the ICP BB emissions with local accumulation in the stagnant meteorological conditions, whereas the RR site is dominated by the regional transport of PM2.5 with strong winds and vertical mixing. It was revealed that the large PM2.5 contributions of ICP BB emissions lift from the lower altitudes in SR to the higher altitudes in RR for the regional transport of PM2.5. Moreover, the contributions of regional transport of PM2.5 decrease with the increase in transport distance, reflecting an important role of transport distance between the source–receptor areas in air pollution change

    Intercomparisons on the Vertical Profiles of Cloud Microphysical Properties From CloudSat Retrievals Over the North China Plain

    No full text
    International audienceAbstract Vertical profiles of cloud microphysical properties importantly determine the lifetime and precipitation rate of clouds. The 94‐GHz cloud profiling radar (CPR) onboard the CloudSat satellite can measure the vertical profile of radar reflectivity, from which the microphysical properties of cloud can be retrieved. The retrievals bear variations due to various assumptions and auxiliary products used. This study targets on the mid‐latitude clouds in the northern hemisphere, and intercompares the CloudSat products describing the vertical profiles of cloud microphysics and evaluate the uncertainties for each retrieval algorithm, with further evaluation by aircraft in‐situ observations over the North China Plain region during 2013–2017. For those retrieval products performing phase apportion, the ambient temperature‐based linear apportioning on mixed‐phase clouds can produce reasonable estimation on ice water content, apart from the heavily precipitating clouds. The retrieved liquid water content constrained by cloud optical depth well matched in‐situ observations, however its effective size is overestimated (hereby underestimating the number concentration of water droplets) because of the influence of larger precipitating hydrometeors on size distribution. The CPR‐only retrieval can well produce the effective diameter and number concentration of ice for deep convection clouds, but using additional lidar constraint underestimates the effective diameter due to the intense attenuation by thick clouds. The analysis here suggests the appropriate parameters from various products for different cloud types, and provides guidance for future development of retrieval algorithms on vertical profiles of cloud microphysical properties

    Effect of Foliar Spray Application of Zinc Oxide Nanoparticles on Quantitative, Nutritional, and Physiological Parameters of Foxtail Millet (Setaria italica L.) under Field Conditions

    Get PDF
    It has been shown that the foliar application of inorganic nano-materials on cereal plants during their growth cycle enhances the rate of plant productivity by providing a micro-nutrient source. We therefore studied the effects of foliarly applied ZnO nanoparticles (ZnO NPs) on Setaria italica L. foxtail millet’s quantitative, nutritional, and physiological parameters. Scanning electron microscopy showed that the ZnO NPs have an average particle size under 20 nm and dominant spherically shaped morphology. Energy dispersive X-ray spectrometry then confirmed ZnO NP homogeneity, and X-ray diffraction verified their high crystalline and wurtzite-structure symmetry. Although plant height, thousand grain weight, and grain yield quantitative parameters did not differ statistically between ZnO NP-treated and untreated plants, the ZnO NP-treated plant grains had significantly higher oil and total nitrogen contents and significantly lower crop water stress index (CWSI). This highlights that the slow-releasing nano-fertilizer improves plant physiological properties and various grain nutritional parameters, and its application is therefore especially beneficial for progressive nanomaterial-based industries
    corecore