37 research outputs found

    Transcriptome profiling of a common mistletoe species parasitizing four typical host species in urban southwest China

    Get PDF
    Comparing gene expressions among parasitic plants infecting different host species can have significant implications for understanding host–parasite interactions. Taxillus nigrans is a common hemiparasitic species in Southwest China that parasitizes a variety of host species. However, a lack of nucleotide sequence data to date has hindered transcriptome-level research on T. nigrans. In this study, the transcriptomes of T. nigrans individuals parasitizing four typical host species (Broussonetia papyrifera (Bpap), a broad-leaved tree species; Cryptomeria fortunei (Cfor), a coniferous tree species; Cinnamomum septentrionale (Csep), an evergreen tree species; and Ginkgo biloba (Gbil), a deciduous-coniferous tree species) were sequenced, and the expression profiles and metabolic pathways were compared among hosts. A total of greater than 400 million reads were generated in nine cDNA libraries. These were de novo assembled into 293823 transcripts with an N50 value of 1790 bp. A large number of differentially expressed genes (DEGs) were identified when comparing T. nigrans individuals on different host species: Bpap vs. Cfor (1253 DEGs), Bpap vs. Csep (864), Bpap vs. Gbil (517), Cfor vs. Csep (259), Cfor vs. Gbil (95), and Csep vs. Gbil (40). Four hundred and fifteen unigenes were common to all six pairwise comparisons; these were primarily associated with Cytochrome P450 and environmental adaptation, as determined in a KEGG enrichment analysis. Unique unigenes were also identified, specific to Bpap vs. Cfor (808 unigenes), Bpap vs. Csep (329 unigenes), Bpap vs. Gbil (87 unigenes), Cfor vs. Csep (108 unigenes), Cfor vs. Gbil (32 unigenes), and Csep vs. Gbil comparisons (23 unigenes); partial unigenes were associated with the metabolism of terpenoids and polyketides regarding plant hormone signal transduction. Weighted gene co-expression network analysis (WGCNA) revealed four modules that were associated with the hosts. These results provide a foundation for further exploration of the detailed molecular mechanisms involved in plant parasitism

    Species Delimitation and Lineage Separation History of a Species Complex of Aspens in China

    Get PDF
    Species delimitation in tree species is notoriously challenging due to shared polymorphisms among species. An integrative survey that considers multiple operational criteria is a possible solution, and we aimed to test it in a species complex of aspens in China. Genetic [four chloroplast DNA (cpDNA) fragments and 14 nuclear microsatellite loci (nSSR)] and morphological variations were collected for 76 populations and 53 populations, respectively, covering the major geographic distribution of the Populus davidiana-rotundifoliacomplex. Bayesian clustering, analysis of molecular variance (AMOVA), Principle Coordinate Analysis (PCoA), ecological niche modeling (ENM), and gene flow (migrants per generation), were employed to detect and test genetic clustering, morphological and habitat differentiation, and gene flow between/among putative species. The nSSR data and ENM suggested that there are two separately evolving meta-population lineages that correspond to P. davidiana (pd) and P. rotundifolia (pr). Furthermore, several lines of evidence supported a subdivision of P. davidiana into Northeastern (NEC) and Central-North (CNC) groups, yet they are still functioning as one species. CpDNA data revealed that five haplotype clades formed a pattern of [pdNEC, ((pdCNC, pr), (pdCNC, pr))], but most haplotypes are species-specific. Meanwhile, PCA based on morphology suggested a closer relationship between the CNC group (P. davidiana) and P. rontundifolia. Discrepancy of nSSR and ENM vs. cpDNA and morphology could have reflected a complex lineage divergence and convergence history. P. davidiana and P. rotundifolia can be regarded as a recently diverged species pair that experienced parapatric speciation due to ecological differentiation in the face of gene flow. Our findings highlight the importance of integrative surveys at population level, as we have undertaken, is an important approach to detect the boundary of a group of species that have experienced complex evolutionary history

    Evolutionary history of two rare endemic conifer species from the eastern Qinghai-Tibet plateau

    Get PDF
    BACKGROUND AND AIMS: Understanding the population genetics and evolutionary history of endangered species is urgently needed in an era of accelerated biodiversity loss. This knowledge is most important for regions with high endemism that are ecologically vulnerable, such as the Qinghai–Tibet Plateau (QTP). METHODS: The genetic variation of 84 juniper trees from six populations of Juniperus microsperma and one population of Juniperus erectopatens, two narrow-endemic junipers from the QTP that are sister to each other, was surveyed using RNA-sequencing data. Coalescent-based analyses were used to test speciation, migration and demographic scenarios. Furthermore, positively selected and climate-associated genes were identified, and the genetic load was assessed for both species. KEY RESULTS: Analyses of 149 052 single nucleotide polymorphisms showed that the two species are well differentiated and monophyletic. They diverged around the late Pliocene, but interspecific gene flow continued until the Last Glacial Maximum. Demographic reconstruction by Stairway Plot detected two severe bottlenecks for J. microsperma but only one for J. erectopatens. The identified positively selected genes and climate-associated genes revealed habitat adaptation of the two species. Furthermore, although J. microsperma had a much wider geographical distribution than J. erectopatens, the former possesses lower genetic diversity and a higher genetic load than the latter. CONCLUSIONS: This study sheds light on the evolution of two endemic juniper species from the QTP and their responses to Quaternary climate fluctuations. Our findings emphasize the importance of speciation and demographic history reconstructions in understanding the current distribution pattern and genetic diversity of threatened species in mountainous regions

    Demographic History and Natural Selection Shape Patterns of Deleterious Mutation Load and Barriers to Introgression across Populus Genome

    Get PDF
    Hybridization and resulting introgression are important processes shaping the tree of life and appear to be far more common than previously thought. However, how the genome evolution was shaped by various genetic and evolutionary forces after hybridization remains unresolved. Here we used whole-genome resequencing data of 227 individuals from multiple widespread Populus species to characterize their contemporary patterns of hybridization and to quantify genomic signatures of past introgression. We observe a high frequency of contemporary hybridization and confirm that multiple previously ambiguous species are in fact F-1 hybrids. Seven species were identified, which experienced different demographic histories that resulted in strikingly varied efficacy of selection and burdens of deleterious mutations. Frequent past introgression has been found to be a pervasive feature throughout the speciation of these Populus species. The retained introgressed regions, more generally, tend to contain reduced genetic load and to be located in regions of high recombination. We also find that in pairs of species with substantial differences in effective population size, introgressed regions are inferred to have undergone selective sweeps at greater than expected frequencies in the species with lower effective population size, suggesting that introgression likely have higher potential to provide beneficial variation for species with small populations. Our results, therefore, illustrate that demography and recombination have interplayed with both positive and negative selection in determining the genomic evolution after hybridization

    Blow to the northeast? Intraspecific differentiation of populus davidiana suggests a northeastward skew of a phylogeographic break boundary in East Asia

    Get PDF
    Aim There is increasing interest in the role that biological traits, and historical and biogeographic processes, play in the formation of phylogeographic patterns. An arid belt that once existed in northern China might have affected many plants, but this has yet to be tested in an arid-tolerant, wind-dispersed species. Here, we tested how intrinsic and extrinsic factors have affected the phylogeography of Populus davidiana. Location East Asia. Methods Genetic variation was surveyed across 40 populations (555 individuals) covering the Chinese range of P. davidiana, using 16 nuclear microsatellite loci (nSSRs) and four chloroplast fragments (cpDNA). Demographic and migration hypotheses were tested using coalescent-based approaches, and the present and past potential distributions were predicted using species distribution modelling. Results Molecular data divide P. davidiana into two lineages, north-eastern China (NECR) and central and northern China (CNCR); however, the dividing line is around 118ºE for nSSRs, but 122ºE for cpDNA. The range and habitat of the two lineages barely overlap at present, and their ecological separation may have initiated around the Pliocene-Quaternary boundary, when major intraspecific cpDNA clades diverged. NECR and CNCR experienced post-glacial north-eastward and northward range shifts respectively. Bi-directional historical gene flow was detected between NECR and CNCR for both bi-parentally inherited nSSRs and maternally inherited cpDNA. Demographic inferences suggest a severe bottleneck for CNCR and especially NECR, around the latest Pleistocene. Main conclusions The phylogeographic break within P. davidiana reflects the impacts of biogeographic history, climate and biological traits. Its plumed, wind-dispersed seeds might be especially significant because prevailing south-western spring winds may have moved the NECR-CNCR boundary further east than similar phylogenetic breaks in other species, and also moved the cpDNA boundary relative to that for nuclear markers. Biological traits, therefore, should also be considered when examining the genetic and ecological differentiation between closely related taxa

    Reticulate evolution within a spruce (Picea) species complex revealed by population genomic analysis

    Get PDF
    This work was supported by grants from National key research and development program (2017YFC0505203), National Natural Science Foundation of China (grant numbers 31590821, 31670665, 91731301), National Key Project for Basic Research (2014CB954100), “1000 Youth Talents Plan” of Yunnan Province and CAS “Light of West China” Program.The role of reticulation in the rapid diversification of organisms is attracting greater attention in evolutionary biology. Evidence of genetic exchange between diverging taxa is reported frequently, although most studies fail to show how hybridization and introgression contribute to the adaptation and differentiation of introgressed taxa. Here, we report a population genomics approach to test the role of hybridization and introgression in the evolution of the Picea likiangensis species complex, which comprises four taxa occurring in the biodiversity hotspot of the Hengduan-Himalayan mountains. Based on 84,793 SNPs detected in transcriptomes of 82 trees collected from 35 localities, we identified 18 hybrids (including backcrosses) distributed within the range boundaries of the four taxa. Coalescent simulations, for each pair of taxa and for all taxa taken together, rejected several tree-like divergence models and supported instead a reticulate evolution model with secondary contacts occurring during Pleistocene glacial cycles after initial divergence in the late Pliocene. Significant gene flow occurred among some taxa after secondary contact according to an analysis based on modified ABBA-BABA statistics that accommodated a rapid diversification scenario. A novel finding was that introgression between certain taxa can contribute to increasing divergence (and possibly reproductive isolation) between those taxa and other taxa within a complex at some loci. These results illuminate the reticulate nature of evolution within the P. likiangensis complex and highlight the value of population genomic data in detecting the effects of introgression in the rapid diversification of related taxa.PostprintPeer reviewe

    Genomic insights into local adaptation and future climate-induced vulnerability of a keystone forest tree in East Asia

    Get PDF
    Assessment of population vulnerability and adaptive capacity under climate change is crucial for informing conservation strategies. Sang et al. assemble a reference genome for Populus koreana and combine population genomics and modelling to predict spatiotemporal responses to climate change.Rapid global climate change is posing a substantial threat to biodiversity. The assessment of population vulnerability and adaptive capacity under climate change is crucial for informing conservation and mitigation strategies. Here we generate a chromosome-scale genome assembly and re-sequence genomes of 230 individuals collected from 24 populations for Populus koreana, a pioneer and keystone tree species in temperate forests of East Asia. We integrate population genomics and environmental variables to reveal a set of climate-associated single-nucleotide polymorphisms, insertion/deletions and structural variations, especially numerous adaptive non-coding variants distributed across the genome. We incorporate these variants into an environmental modeling scheme to predict a highly spatiotemporal shift of this species in response to future climate change. We further identify the most vulnerable populations that need conservation priority and many candidate genes and variants that may be useful for forest tree breeding with special aims. Our findings highlight the importance of integrating genomic and environmental data to predict adaptive capacity of a key forest to rapid climate change in the future

    Pervasive hybridization during evolutionary radiation of Rhododendron subgenus Hymenanthes in mountains of southwest China

    Get PDF
    Radiations are especially important for generating species biodiversity in mountainous ecosystems. The contribution of hybridization to such radiations has rarely been examined. Here, we use extensive genomic data to test whether hybridization was involved in evolutionary radiation within Rhododendron subgenus Hymenanthes, whose members show strong geographic isolation in the mountains of southwest China. We sequenced genomes for 143 species of this subgenus and 93 species of four other subgenera, and found that Hymenanthes was monophyletic and radiated during the late Oligocene to middle Miocene. Widespread hybridization events were inferred within and between the identified clades and subclades. This suggests that hybridization occurred both early and late during diversification of subgenus Hymenanthes, although the extent to which hybridization, speciation through mixing-isolation-mixing or hybrid speciation, accelerated the diversification needs further exploration. Cycles of isolation and contact in such and other montane ecosystems may have together promoted species radiation through hybridization between diverging populations and species. Similar radiation processes may apply to other montane floras in this region and elsewhere

    Plastome phylogeny and early diversification of Brassicaceae

    Get PDF
    Background: The family Brassicaceae encompasses diverse species, many of which have high scientific and economic importance. Early diversifications and phylogenetic relationships between major lineages or clades remain unclear. Here we re-investigate Brassicaceae phylogeny with complete plastomes from 51 species representing all four lineages or 5 of 6 major clades (A, B, C, E and F) as identified in earlier studies. Results: Bayesian and maximum likelihood phylogenetic analyses using a partitioned supermatrix of 77 protein coding genes resulted in nearly identical tree topologies exemplified by highly supported relationships between clades. All four lineages were well identified and interrelationships between them were resolved. The previously defined Clade C was found to be paraphyletic (the genus Megadenia formed a separate lineage), while the remaining clades were monophyletic. Clade E (lineage III) was sister to clades B + C rather than to all core Brassicaceae (clades A + B + C or lineages I + II), as suggested by a previous transcriptome study. Molecular dating based on plastome phylogeny supported the origin of major lineages or clades between late Oligocene and early Miocene, and the following radiative diversification across the family took place within a short timescale. In addition, gene losses in the plastomes occurred multiple times during the evolutionary diversification of the family. Conclusions: Plastome phylogeny illustrates the early diversification of cruciferous species. This phylogeny will facilitate our further understanding of evolution and adaptation of numerous species in the model family Brassicaceae
    corecore