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Abstract

Background: The family Brassicaceae encompasses diverse species, many of which have high scientific and
economic importance. Early diversifications and phylogenetic relationships between major lineages or clades
remain unclear. Here we re-investigate Brassicaceae phylogeny with complete plastomes from 51 species
representing all four lineages or 5 of 6 major clades (A, B, C, E and F) as identified in earlier studies.

Results: Bayesian and maximum likelihood phylogenetic analyses using a partitioned supermatrix of 77 protein coding
genes resulted in nearly identical tree topologies exemplified by highly supported relationships between clades. All
four lineages were well identified and interrelationships between them were resolved. The previously defined Clade C
was found to be paraphyletic (the genus Megadenia formed a separate lineage), while the remaining clades were
monophyletic. Clade E (lineage III) was sister to clades B + C rather than to all core Brassicaceae (clades A + B + C or
lineages I + II), as suggested by a previous transcriptome study. Molecular dating based on plastome phylogeny
supported the origin of major lineages or clades between late Oligocene and early Miocene, and the following
radiative diversification across the family took place within a short timescale. In addition, gene losses in the plastomes
occurred multiple times during the evolutionary diversification of the family.

Conclusions: Plastome phylogeny illustrates the early diversification of cruciferous species. This phylogeny will facilitate
our further understanding of evolution and adaptation of numerous species in the model family Brassicaceae.
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Background
The predominantly herbaceous family Brassicaceae
(Cruciferae), which has some 3700 species, includes many
vegetable crops in the genera Brassica and Raphanus,
sources of spices (Eutrema and Armoracia) and vegetable
oils (Brassica), ornamentals (Arabis, Hesperis, Lobularia,
and Matthiola), and model species in experimental biol-
ogy (e.g., Arabidopsis thaliana). A robust phylogeny is
crucial for diverse comparative studies. However, resolving
the deep phylogeny of the family has been particularly
challenging because its early evolution was extremely
rapid [1–5], accompanied with ancient gene flow [6], poly-
ploidization [7–9], and origin of novel traits [10]. Prior
phylogenetic studies, which involved 325 genera and 51
tribes using sequence variations of a few chloroplast

DNAs or ITS, identified four major lineages, with the
basal lineage (tribe Aethionemeae) sister to the remaining
three lineages (I, II, and III, i.e., core Brassicaceae) [2–5,
11–16]. The relationships between lineages within core
Brassicaceae remained unsolved or inconsistent in those
studies. Most recently, six clades were proposed based on
phylogenetic analyses of low-copy nuclear genes retrieved
from transcriptomes of 55 species [17]. The study further
divided lineage II into three clades (B, C, D), but the
remaining three clades were similar to the previously rec-
ognized three lineages (basal lineage, and lineages I and
III). The clade E (lineage III) was sister to the remaining
core Brassicaceae species (clades A + B + C or lineages I +
II), but the relationship within the core were unsolved in
the previous study [5]. Phylogenetic conflicts between dif-
ferent datasets, especially between nuclear and cytoplas-
mic genomes in plants, were found [18, 19], possibly
suggesting complex evolutionary history.
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The chloroplast genomes (plastomes), with extremely
more informative sites for phylogenetic analyses than
only a few DNA fragments, have proven to be highly ef-
fective in resolving disputed interrelationships in numer-
ous plant groups [20–22]. Plastomes vary in size
between 75 and 250 kb, have numerous copies in a given
cell, inherited maternally in most plants, and have con-
served gene content and order [23, 24]. The plastome is
characterized by two usually large inverted repeat re-
gions (IRa and IRb) separated by two single-copy regions
referred to as the large single-copy region (LSC) and
small single-copy region (SSC) that vary in length. Occa-
sional structural changes, such as gene or intron losses,
inversions, and rearrangements, were revealed by com-
parative genomic studies between groups. For examples,
numerous plastome genes were lost multiple times in
parasitic, nonphotosynthetic plants such as species of
Cuscuta [25, 26], Epifagus [27], and Rhizanthella [28]. In
photosynthetic species, the loss of chloroplast genes
rarely occurs and only when the nuclear and/or mito-
chondrial genomes contain another functional copy or
acquired one from the plastome through gene transfer
[29]. Such rare cases were found in the rpl22 gene in
Fagaceae and Passifloraceae [30], the rpl32 gene in Popu-
lus [31], and the infA gene in Brassicaceae [32]. There-
fore, the relative stability of plastomes in plants provide
highly orthologous alignments of large genome data that
are valuable for phylogenetic analyses and calibrated di-
vergence estimation [33–35].
The first plastome phylogeny of Brassicaceae have re-

cently been presented aiming to provide a reliable tem-
poral evolutionary framework within the entire clade of
Superrosidae angiosperms and using critically evaluated
fossil data for calibrating divergence-time estimates [35].
This was urgently needed because of conflicting hypoth-
eses on Brassicaceae divergence-time estimates [36]. We
built on this study [35] and expanded our sampling to
51 Brassicaceae plastomes and Cleome as outgroup.
These species cover all four lineages or 5 out of 6 clades
identified before [5, 17]. We aimed to examine whether
the plastome dataset could: (1) significantly support the
previously shown deep splits; (2) resolve the disputed in-
terrelationships between lineages or clades; and (3) re-
veal any previously overlooked structural evolution
within Brassicaceae plastomes.

Results
Basic characteristics of Brassicaceae chloroplast genomes
The average length of the plastomes from 53 species of
Brassicales (Additional file 1: Table S1) is 154 kb, ranging
from 152,659 bp in Lobularia maritima to 160,100 bp in
Carica papaya (Additional file 1: Table S2). The average GC
content is 36.4, 34.1, 29.3 and 42.3% for complete sequences,
LSC, SSC and IR regions a and b, respectively, and varies

slightly between species (Additional file 1: Table S2). As in
the vast majority of angiosperms, both gene content
and gene order are highly conserved, where the typical
quadripartite organization harbored 132 genes includ-
ing 79 protein coding genes (PCGs, 8 duplicated in IR),
30 tRNA genes (7 duplicated in IR) and 4 rRNA genes
(4 duplicated in IR).

Sequence alignment and evaluation of data partitions
Based on the 77 PCGs, a gap-free supermatrix containing
64,962 sites was concatenated, of which 7611 were parsi-
mony informative (Additional file 1: Table S3). The
aligned lengths of these PCGs ranged from 84 to 6645 bp
(mean = 844 bp). No significant compositional heterogen-
eity among sequences was detected for any genes among
species (Additional file 1: Table S4). The combined 77-
gene data set displayed no apparent substitution satur-
ation (Additional file 1: Table S4). Evaluation of partition
strategies suggested that the automatically determined
scheme is the best according to Bayesian information cri-
terion (BIC) and the most parameter-rich gene-codon
model is generally better than the less partitioned ones,
while the codon-partitioned model was favored over the
gene-partitioned model (Additional file 1: Table S5).

Plastome phylogeny
Both RAxML and BEAST analyses of the concatenated se-
quence supermatrix produced similar topologies for the
53 species. For ML analysis, the topology and support
values for specific splits varied using different partition
schemes or subsets. After a visual check, no well-
supported conflicts (i.e., those receiving bootstrap (BS)
>90%) were found between individual genes trees. Regard-
less of the data partition strategy in our ML analysis, the
majority of relationships across the family were consistent
and well supported. The BEAST topology based on the
best-partition scheme defined by partition finder produced
well-resolved phylogeny for all but two nodes (Fig. 1). In
line with a recent conclusion [17], the three previously
proposed lineages are placed into different clades. The
placement of tribe Lepidieae was unstable across the ana-
lysis, and the alternative topology could not be rejected by
approximately unbiased (AU) test (P = 0.297, Table 1).
However, the relationship between clades determined by
plastomes is discordant with nuclear gene phylogeny [17].
Of particular interest is the recently defined Clade E, a
lineage containing a majority of Lineage III species, which
is sister to the combined BC clade. Thus, after the split
with basal Aethionemeae species, the core Brassicaceae di-
verged into two large clades. The first clade included spe-
cies from Lineage I (or Clade A), while the second clade
consisted of species from all other major lineages or clades
except for the newly identified Clade D because of the
limited taxon sampling. In addition, we found that
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Fig. 1 Phylogeny of Brassicaceae. Time-calibrated phylogeny of 51 Brassicaceae species inferred from a concatenated Bayesian analysis of 77 plastome
protein-coding genes with all mutations using BEAST2. Higher taxon names appear at right. All nodes are supported with posterior probability (PP) of
1.0, except for two marked with circles (Node1: PP = 0.558; Node2: PP = 0.833). Geological periods were marked with background colors. Ma million
years ago, Ple Pleistocene, Pli Pliocene, Q. Quaternary

Table 1 Comparison of tree topology hypotheses by using likelihood

Hypothesis △lnL AU BP PP KH WKH SH WSH

H1 Best 0.756 0.721 0.977 0.73 0.73 0.966 0.986

H2 3.7 0.297 0.273 0.023 0.27 0.27 0.693 0.555

H3 25.3 0.011 0.006 1.00E-11 0.014 0.014 0.176 0.026

H4 27.9 0.003 4.00E-05 7.00E-13 0.007 0.007 0.145 0.022

H5 118.1 8.00E-65 0 5.00E-52 0 0 0 0

Note: Tree Hypothesis: H1. This study; H2. (Other CladeA + Cardamineae) + Lepidieae; H3. (((A, E), (B, C)), F); H4. (((A, (B, C)), E), F); H5. Megadenia within Clade C.
△lnL: the observed log-likelihood difference. AU approximately unbiased test, BP bootstrap probability test, PP approximate Bayesian posterior probability, KH
Kishino-Hasegawa test, WKH weighted Kishino-Hasegawa test, SH Shimodaira-Hasegawa test, WSH weighted Shimodaira-Hasegawa test. P values >0.05 are in bold.
The topology for each alternative hypothesis is provided in Additional file 2: Figure S1
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Megadenia, a genus placed in the tribe Biscutelleae of
Clade C, is sister to all other species of Clades B and C.
Multiple tests confirmed the relationship recovered here
and rejected the alternative phylogeny as previously pro-
posed [17] (P < 0.01, Table 1).

Fossil calibration and molecular dating
We included plastomes of 75 outgroups in order to
allow the use of 14 non-Brassicales calibrations
(Additional file 2: Figure S2; Additional file 1: Table S6).
A clock rate partition test found two partitions for the
whole alignment as the best fit scheme under relaxed
lognormal clock model. Overall, the calculation of diver-
gence times were barely affected by whether fossil cali-
brations within the Brassicales were used (Table 2;
Additional file 1: Table S7). Also, there was no effect on
age estimation whether we included the questionable
Thlaspi primaevum fossil [37] (here used as a conserva-
tive constrain to the Brassicaceae crown node as sug-
gested [36]) or used the newly identified Palaeocleome
lakensis fossil in the analysis [33] (Additional file 1:
Table S7). According to the MCMCTREE time esti-
mates, the core Brassicaceae and Aethionemeae began
to split at 35.2 (30.0–42.5) Mya during the Eocene-
Oligocene boundary (Fig. 1) while the origins of the
major lineages or clades occurred between the late
Oligocene and early Miocene (Table 2). These time esti-
mates are broadly consistent with recent studies using

large-scale genomic data [5, 17, 34, 35]. Remarkably, all
major lineages or clades radiated within a short time-
scales window (~3 Myr between 17 and 20 Mya in the
crown age; Fig. 1 and Table 2).

Gene loss across Brassicaceae
As shown in Fig. 2, of the total 79 PCGs, 77 were pre-
dicted to be functional genes while rps16 and ycf15 be-
came pseudogenes in some species (see also Additional
file 2: Figures S3 and S4). Besides, the rpl22 gene was
slightly truncated in Matthiola incana. The only excep-
tion was found for Solms-laubachia eurycarpa, where 10
of the 11 ndh genes were either slightly or severely trun-
cated due to premature stop codons.

Discussion
In order to generate a backbone plastome phylogeny for
Brassicaceae, we assembled 20 new plastomes to encom-
pass all four lineages and 5 out of 6 major clades. All as-
sumed lineages and major clades were generally
identified, and their phylogenetic relationships were well
resolved. In particular, our plastome phylogeny from 51
species provided the following new insights compared to
those based on the fewer species plastome [35] or tran-
scriptome genes [17]. First, Clade E, a group of Lineage
III, is sister only to Clades B + C instead of sister to
Clades B + C + A [17]. Clade A diverged from the group
comprised Clades B + C + E very early. Second, the genus
Megadenia of the tribe Biscutelleae in Clade C is sister
to the remaining examined species of Clades B and C.
This genus was shown to be closely related to Biscutella
within the tribe Biscutelleae [38–41]. Thus, the phylo-
genetic relationship of the genus needs further examina-
tions when more genera are sampled. Third, our
comparisons based on different datasets suggested that
the saturation in the third codon and phylogenetic sig-
nals from distinct plastome regions seriously affected the
divergence and statistical supports in some particular
nodes. For example, the tribes Lepidieae and others of
Lineage I (Clade A) showed no distinct bifurcating diver-
gence if all mutations of the total plastome dataset were
used (Fig. 1). However, when excluding the third codon
or using only slow-evolving IR genes, the Lepidieae di-
verged from Cardamineae and the others of the Lineage
I (Clade A) with high statistical support (Additional file
2: Figures S5 and S6). Pachycladon was suggested to be
closely related to Crucihimalaya [37, 42] as confirmed
here by all plastome mutations (Fig. 1). However, this
sister relationship was not supported when the IR gene
dataset was used alone (Additional file 2: Figure S6).
Taxon sampling and reliable fossils used for calibra-

tions are extremely important to estimate the divergence
of targeted phylogeny [43–45]. Due to the high conser-
vation and stable alignments, we used 14 highly reliable

Table 2 Mean and 95% HPD Age Estimates from MCMCTree
Analysis

Node Brassicales Fossils

Used Not Used

Cleomaceae vs Brassicaceae 44.5 - 50.5 - 59.1 39.5 - 49.0 - 57.6

Crown Brassicaceae 30.0 - 35.2 - 42.5 29.0 - 34.9 - 41.8

Crown core-Brassicaceae 21.7 - 25.3 - 29.7 21.3 - 25.1 - 29.8

Crown Clade A 16.9 - 20.3 - 24.2 16.5 - 20.0 - 24.1

Crown Arabidopsis 4.8 - 7.1 - 9.8 4.8 - 7.0 - 9.7

Crown Camelieae 7.5 - 9.9 - 12.8 7.4 - 9.7 - 12.5

Crown Cardamineae 10.2 - 14.2 - 18.6 10.0 - 14.0 - 18.3

Crown Clade B 17.6 - 20.6 - 24.5 17.2 - 20.3 - 24.4

Brassica vs Schrenkiella 11.4 - 14.7 - 18.3 11.2 - 14.5 - 18.2

Crown Eutremeae 6.5 - 10.1 - 14.3 7.4 - 10.0 - 14.2

Crown Arabideae 11.0 - 14.6 - 18.6 10.8 - 14.4 - 18.5

Crown Clade C 16.9 - 20.1 - 24.0 16.6 - 19.8 - 24.0

Crown Cochlearieae 7.8 - 11.6 - 15.9 7.6 - 11.5 - 15.9

Crown Megacarpaeeae 10.1 - 14.8 - 19.6 10.0 - 14.6 - 19.3

Megadenia vs BC clades 19.3 - 22.6 - 26.7 18.3 - 22.3 - 26.7

Crown Clade E 12.7 - 17.3 - 22.0 12.4 - 17.0 - 21.8

Crown Clade F 9.5 - 14.6 - 20.7 9.3 - 14.3 - 20.3

The numbers in boldface are mean values

Guo et al. BMC Genomics  (2017) 18:176 Page 4 of 9



fossils from other eudicot orders [46] and three Brassi-
cales. Our calibration comparisons suggested that the
calculated divergences were rarely affected by Brassicales
fossils, including the debated Brassicaceae fossil [37].
The estimated divergence times for major nodes were
largely compatible with previous studies [5, 17, 34, 35],
and it highlighted several evolutionary events. First, the
stem age of Brassicaceae is around 50.5 Mya, ~6 Mya
older than estimated by Magallón et al. [46] and ~5 Mya
younger than estimated by Huang et al. [17], but consist-
ent with a recent study across the Brassicales order [33].
Second, we confirmed that Brassicaceae began to diver-
sify ~35.2 Mya during the Eocene-Oligocene boundary
[35], when a warm and humid climate dominated the
world [47]. Third, all major clades or lineages radiated
within a short timescale between ~20 and ~17 Mya. All
of these estimates are non-significantly different from
those based on the plastomes with fewer Brassicaceae spe-
cies [35], but younger than those based on the low-copy

nuclear genes [17] with more representatives at the genus
level. Therefore, both taxon sampling and evolutionary
rates of different genomes might have caused differences
in the estimated node times between different datasets.
A few chloroplast genes were lost in photosynthetic

plants [29]. In this study, we reaffirmed the loss of the
rps16 gene in the LSC region [48] and found that the
ycf15 in the IR region became a pseudogene independ-
ently in different tribes of this family. Both genes were
previously lost in other plants species [29]. The validity of
ycf15 as a protein-coding gene remains debated [49–51],
and it may have a regulatory function [52] after the full
transcription of the chloroplast genome [53]. Until now,
the mechanism underlying the loss of the plastome gene
in Brassicaceae has been poorly understood. The do-
minance of self-compatibility in the family might be re-
lated with the transfer and/or loss of some organelle genes
[48, 54]. However, it should be noted that Solms-lauba-
chia eurycarpa has lost most ndh genes. To our

Fig. 2 Loss of chloroplast protein-coding genes across Brassicaceae. Below are the phylogeny of Brassicaceae species based on chloroplast genomes
as shown in Fig. 1. Different chloroplast regions were indicated at the left side. Grey and red boxes indicate intact and possible pseudogenized of genes,
respectively. IR inverted repeat, LSC large single-copy region, SSC small single-copy region
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knowledge, this is the first report of the massive loss of
the ndh genes in Brasssicales. A typical plastid genome
contains 11 ndh genes that are highly conserved across
most autotrophic seed plants, which indicates the pres-
ence of strong selection pressure for their retention. A
complete loss of the plastid ndh gene was only reported in
conifers, Gnetales, and some epiphytic plants [55, 56].
Further studies are needed to examine whether specific
factors were associated with the loss of the ndh genes in
the genus Solms-laubachia.

Conclusions
Recent emergence of large scale phylogenomic data have
undoubtedly provided a major advancement for under-
standing the complex systematics and taxonomy of the
Brassicaceae, while phylogenetic relationships of the en-
tire large family is far from being fully resolved. Using
51 chloroplast genomes from species of major crucifer-
ous lineages or clades, we were able to resolve deep
splits in this important plant family and found incongru-
ence between organelle and nuclear genomes. The up-
dated phylogenetic framework, based on plastome
analysis, can be used to test many interesting evolution-
ary hypothesis on the origin and early diversification of
Brassicaceae species. With the rapid increase in genomic
data, we envision that a further in-depth understanding
of the evolution of this model plant family will soon be
possible.

Methods
Taxon sampling and plastome assembly
A total of 53 Brassicales species were included in this
study, among which were 51 Brassicaceae species
from 28 genera representing 19 out of the 51 tribes
in all four major lineages or 5 out of the 6 newly
identified clades. Plastome sequences were either ob-
tained from the NCBI (last accessed, Jan 1st, 2016) or
newly assembled (Additional file 1: Table S1). For the
newly sequenced plastomes, we used the Illumina HiSeq
X Ten sequencing pipeline to generate at least 2 Gb of
2 × 150 bp short reads data for each sample. Reads from
the SRA database were extracted with fastq-dump soft-
ware implemented in the SRA toolkit. We initially filtered
reads following the previous approach [57]. Then, plas-
tome contigs were assembled using Velvet [58], which
were further reordered to the Arabidopsis thaliana plas-
tome with SAMtools [59]. We finally merged all contigs
into a consensus linear sequence using Geneious version
8.0.5 [60]. The annotation was performed with CpGAVAS
[61] or Plann [62], aided by manually refinement in Apollo
genome editor [63] and/or Sequin software [64]. Aragorn
web-interface [65] was used to predict tRNAs.

Sequence alignment and partition strategy
Protein coding genes (PCGs) were extracted from the
Genbank formatted file containing all plastomes using
customized Perl scripts, removing start and end codons.
After excluding possible pseudogenes, a total of 77 PCGs
were retained for all species except for Solms-laubachia
eurycarpa, where the pseudogenized ndh genes were edi-
ted and included. Each PCG was aligned using PRANK
v.130410 [66] according to the translated amino acid se-
quences. Ambiguous alignment regions were trimmed by
using Gblocks 0.91b [67] with (−t = c) option to set se-
quence type to codons; otherwise the default settings were
assumed.
To test the phylogenetic effects of different regions of

the plastid genome, we created the following datasets
based on different plastome partitions. All 77 refined PCG
alignments were firstly combined into a concatenated data
set and four different partitioning schemes: 1 partition
(unpartitioned); 3 partitions (a separate partition for all
first, second, and third codon positions); 77 partitions
(one partition for each gene); and 231 partitions (a separ-
ate partition for the first and second codon positions to-
gether in each gene and a partition for the third codon
position in each gene). In addition, a best-fit partitioning
schemes and models were selected using the greedy search
mode implemented in PartitionFinder v1.1.1 [68]. Com-
parisons of the five partitioning strategies and selections of
corresponding nucleotide substitution models were con-
ducted under the Bayesian information criterion (BIC). The
best-fitting partitioning strategy found by PartitionFinder
was used in the following analysis. In addition to the main
dataset, we also extract subsets from the 77-gene align-
ments containing either first and second codon positions or
third codon positions only to explore the effect of potential
sequence saturation at third codon. The data matrices and
resulting trees were deposited in TreeBase (http://purl.org/
phylo/treebase/phylows/study/TB2:S20512).

Phylogenetic analysis
The concatenated data set was first evaluated by BaCoCa
[69], a recently developed program to perform multiple
statistical analyses on multiple nucleotide and amino-
acid sequence alignments, and then analyzed with Bayes-
ian method and maximum likelihood (ML). The
percentage of PI sites of each gene was estimated by
PAUP [70]. The Bayesian MCMC analysis program
BEAST (version 2.3.0) [71] was used to build phy-
logenetic trees, with parameter settings according to
Hohmann et al. [35]. The GTR +G model was used for
all ML analyses using RAxML version 8.0.20, as sug-
gested in the manual [72]. Supports for nodes were
assessed with 500 rapid bootstrapping replicates.
Likelihood-based tests of alternative phylogenetic hy-
potheses were assessed based on the concatenated data
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set. Site-wise log-likelihoods of all alternative hypotheses
(see Table 2) were first calculated with RAxML under
the GTR + G model using the option (-f g). Then, the
site log-likelihood file was supplied to the CONSEL v0.1j
program [73] (Shimodaira and Hasegawa 2001) to esti-
mate P-values for each alternative hypothesis using the
AU test, approximate Bayesian posterior probability test,
bootstrap probability test, Kishino-Hasegawa (KH) test,
weighted KH test, Shimodaira-Hasegawa test (SH), and
weighted SH test.

Divergence-time estimation and fossil calibration
We used the latest MCMCTREE in the PAML4.9a package
to estimate divergence times with an approximate likeli-
hood calculation [74], which allows a gamma-Dirichlet
prior to describe substitution rates across multiple loci,
thereby improving the accuracy of divergence-time estima-
tion [75]. Optimal scheme for partitioning of the molecular
clock(s) was tested for using ClockstaR 2.0.1 [76]. The ML
phylogenetic tree topology from the 77 concatenated PCGs
was used for divergence time estimation, and the ML
branch lengths were estimated using the BASEML program
in PAML under the GTR substitution model. For the
gamma-Dirichlet prior for the overall substitution rate
(rgene gamma), we used a quite diffuse (uninformative)
prior =1. We used 14 highly reliable fossils from eudicot
orders and three Brassicales fossils (Additional file 1: Table
S6). All fossils were carefully selected according to their
original descriptions and calibrations by past researches.
Based on the mean estimate from three codon partitions
using the strict molecular clock assuming 136 Ma con-
straint at the root, an average of the eudicot-monocot split
[46], the gamma-Dirichlet prior for the overall substitu-
tion rate (rgene gamma) was set at G (4, 80, 1). The
gamma-Dirichlet prior for the rate-drift parameter
(sigma2 gamma) was set at G (1, 10, 1).
All calibration constraints were not rigorously

constrained (specified with 2.5% tail probabilities above or
below their limits; this is a built-in function of
MCMCTREE). The independent rates model (clock = 2 in
MCMCTREE) [77] was used to specify the prior of rates
among the internal nodes, which followed a log-normal
distribution. The three parameters (birth rate λ, death rate
μ, and sampling fraction ρ) in the birth-death process with
species sampling were specified as 1, 1, and 0, respectively.
After a burn-in period of 1,000,000 cycles, the MCMC
run was sampled every 250 cycles until a total of 20,000
samples were collected. Two separate MCMC runs were
compared for convergence with two different random
seeds and similar results were observed. To explore the in-
fluence of our fossil calibrations on age estimates, we con-
ducted four separate analyses testing the inclusion of
various fossil combinations (Additional file 1: Table S7).
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used in this study. Table S2. Comparison of sequence length and GC
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Table S4. Heterogeneity and saturation test results from BaCoCa analysis.
Table S5. Comparison of partitioning strategies. Table S6. Species and
lineage specific fossil calibrations. Table S7. Comparison of mean and
95% HPD age estimates using different fossils. (XLSX 48 kb)

Additional file 2: Figure S1. Topologies of alternative tree hypothesis used
in approximately unbiased test. Figure S2. Chronogram of Brassicaceae and
75 outgroup taxa inferred using MCMCTree. Figure S3. Alignment view of
Brassicales rps16 genes in MEGA6. Figure S4. Alignment view of Brassicales
ycf15 genes in MEGA6. Figure S5. A phylogeny from ML analyses of 77 PCGs
using 1st an 2nd codon. Figure S6. A phylogeny from ML analyses of 77
PCGs using genes from the IR region. Figure S7. A phylogeny from ML
analyses of 77 PCGs using 3rd codon. Figure S8. A phylogeny from ML
analyses of 77 PCGs using all three codons. (PDF 625 kb)
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