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ABSTRACT 40 

Aim: There is increasing interest in the role that biological traits, and historical and 41 

biogeographic processes, play in the formation of phylogeographic patterns. An arid belt 42 

that once existed in northern China might have affected many plants, but this has yet to be 43 

untested in an arid-tolerant, wind-dispersed species. Here we tested how intrinsic and 44 

extrinsic factors have affected the phylogeography of Populus davidiana. 45 

Location: East Asia 46 

Methods: Genetic variation was surveyed across 40 populations (555 individuals) 47 

covering the Chinese range of P. davidiana, using 16 nuclear microsatellite loci (nSSRs) 48 

and four chloroplast fragments (cpDNA). Demographic and migration hypotheses were 49 

tested using coalescent-based approaches, and the present and past potential distributions 50 

were predicted using species distribution modelling. 51 

Results: Molecular data divides P. davidiana into two lineages, northeastern China 52 

(NECR), and central and northern China (CNCR); however, the dividing line is around 53 

118ºE for nSSRs, but 122ºE for cpDNA. The range and habitat of the two lineages barely 54 

overlap at present, and their ecological separation may have initiated around the Pliocene-55 

Quaternary boundary, when major intraspecific cpDNA clades diverged. NECR and CNCR 56 

experienced postglacial northeastward and northward range shifts, respectively. Bi-57 

directional historical gene flow was detected between NECR and CNCR for both bi-58 

parentally inherited nSSRs and maternally inherited cpDNA. Demographic inferences 59 

suggest a severe bottleneck for CNCR and especially NECR, around the latest Pleistocene. 60 

Main conclusions: The phylogeographic break within P. davidiana reflects the impacts of 61 

biogeographic history, climate and biological traits. Its plumed, wind-dispersed seeds 62 

might be especially significant, because prevailing southwestern spring winds may have 63 

moved the NECR-CNCR boundary further east than similar phylogenetic breaks in other 64 

species, and also moved the cpDNA boundary relative to that for nuclear markers. 65 

Biological traits, therefore, should also be considered when examining the genetic and 66 

ecological differentiation between closely related taxa. 67 

 68 

KEYWORDS 69 

phylogeographic break, arid belt, demographic history, species distribution modelling, 70 

biological traits, aspen 71 
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1 | INTRODUCTION 73 

Biogeographic patterns within and between species are determined by both extrinsic (e.g. 74 

Avise, 2009; Hewitt, 2000; Hickerson et al., 2010; Gavin et al., 2015), and intrinsic factors 75 

(e.g. Lê, Josse, & Husson, 2008; Papadopoulou & Knowles, 2016). Extrinsic factors 76 

include historical and biogeographic processes, such as climate shifts and their knock-on 77 

effects (e.g. Avise, 1992; Matlack, 1987; Ye et al., 2017a), the uplift of mountains (e.g. Du 78 

et al., 2017), and the formation of rivers (e.g. Yue et al., 2012). Intrinsic factors, such as 79 

biological traits, have received considerably less attention (e.g. Papadopoulou & Knowles, 80 

2016; Paz et al., 2015; Sukumaran & Knowles, 2018), but can affect phylogeography by 81 

influencing gene flow, effective population size (Ne), ecological adaptation and 82 

establishment in new habitats (Freeland, 2011). For similarly distributed but unrelated 83 

lineages, extrinsic factors generate concordant patterns (Avise, 1992; Chen et al., 1989; 84 

Joseph et al., 1995; Milne & Abbott, 2002; Minami & Azuma, 2003; Wang et al., 2016; 85 

Qiu, et al., 2011; Ye et al., 2017a), whereas intrinsic factors usually underlie taxon-specific 86 

patterns (Papadopoulou & Knowles, 2016). Traits that affect ecological adaptation are 87 

difficult to measure directly, but can be examined indirectly via range and niche 88 

reconstruction through species distribution modelling (Catullo et al., 2015; Elith & 89 

Leathwick, 2009). 90 

The mesic vegetation of China was divided by an arid belt lying between ~35°N and 91 

~45°N, which varied in width and intensity especially during the late Tertiary period (Guo 92 

et al., 2008). Though its intensity is now reduced, this arid belt divides the East Asiatic 93 

floristic kingdom, and may account for clear phylogenetic divides between these regions 94 

in many Tertiary relict groups (Donoghue & Li, 2001; Milne & Abbott, 2002). The 95 

biogeographic effect of this belt on any lineage would depend on its tolerance of aridity, 96 

and many lineages exhibit varying degrees of gene flow between the two sides of the arid 97 

belt (Guo et al., 2014; Liu & Ko, 2014; Zong et al., 2015; Ye et al., 2017b; Bai et al., 2016). 98 

Populus davidiana Dode is an arid- and cold-tolerant, wind-pollinated and wind-99 

dispersed deciduous tree species distributed across northern China, with extensions into the 100 

Korean Peninsula, easternmost Mongolia and the Russian Far East (Zheng et al., 2017; Hou 101 

et al., 2018; Fang, Zhao, & Skvortsov, 1999), and hence on both sides of the arid belt. 102 

Zheng et al. (2017) studied species delimitation and lineage divergence history of the 103 

Populus davidiana complex (which includes P. davidiana and P. rotundifolia Griffith), and 104 

detected intraspecific genetic differentiation within this species, across where the arid belt 105 

lay, suggests a barrier to intraspecific gene flow in the past. Yet, only 165 individuals from 106 

33 populations of the species were sampled (Zheng et al., 2017). 107 

In this study, we sampled 555 individuals from 40 populations of P. davidiana across 108 
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northern and northeastern China, and examined intraspecific variation using 16 nuclear 109 

microsatellite loci (nSSRs) and four chloroplast fragments (cpDNA). Historical rates of 110 

gene flow and demographic histories were inferred, and species distribution modelling 111 

(SDM) was used to predict distributions for nine time periods. We aimed to (1) determine 112 

whether the phylogeographic divide identified in P. davidiana matches that of other plant 113 

lineages, and (2) to figure out the roles that external and intrinsic factors have played in 114 

shaping the phylogeographic pattern of this species. Throughout this paper, “P. davidiana” 115 

refers to P. davidiana sensu stricto, i.e. excluding P. rotundifolia as per Zheng et al. (2017).  116 

 117 

2 | MATERIALS AND METHODS 118 

2.1 | Population sampling and genotyping 119 

We sampled 555 individuals from 40 populations throughout the main range of Populus 120 

davidiana, in northern China (Fig. 1, Table S1 in Appendix S3), including the 170 121 

individuals from 33 populations sampled by Zheng et al. (2017). Between three and 27 122 

trees were sampled from each population, with all sampled individuals at least 100 m apart 123 

from one another. A total of 541 individuals were successfully genotyped using a set of 16 124 

nuclear microsatellite loci (Appendix S3, Table S2), and four chloroplast DNA (cpDNA) 125 

regions (matK, trnG-psbK, psbK-psbI, and ndhC-trnV) (Appendix S3, Table S2) were 126 

sequenced for 370 individuals across all sampled populations, plus one P. adenopoda 127 

individual as outgroup. For leaf collection, DNA extraction, PCR and sequencing methods 128 

see Appendix S1, Text 1.1. Allele sizes for each nSSR locus were analyzed with 129 

GeneMarker version 2.2.0 (Softgenetics, Pennsylvania, USA). 130 

2.2 | Statistical Analysis of cpDNA data 131 

CpDNA sequences were edited, aligned, manually checked, and concatenated with 132 

Clustal W in MEGA 5.0 (Tamura et al., 2011). All sequences generated in this study were 133 

then deposited in NCBI GenBank (Accession Numbers: MH768816-MH768887, 134 

MH768600-MH768671, MH768672-768743). Insertions/deletions (indels, excluding 135 

mononucleotide repeats) were encoded by software Gapcoder (Young & Healy, 2003), and 136 

then the 0/1 characters (except ‘–’ gaps after coding) were replaced manually by A/T to 137 

use indel information (e.g. Havrdová et al., 2015). The haplotype variant sites were 138 

detected using DNASP v.5.10 (Librado & Rozas, 2009). NETWORK v.4.6 was adopted to 139 

infer network relationships between cpDNA haplotypes based on sequence variation 140 

(Bandelt, Forster, & Rohl, 1999). After that, to compare the genetic diversity of each 141 

population, haplotype diversity (Hd) and nucleotide diversity (π) were calculated at the 142 

population level using DNASP v5 (Librado & Rozas, 2009). In addition, a test of 143 
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phylogeographic structure was conducted in PERMUT (available at: 144 

http://www.pierroton.inra.fr/genetics/labo/Software/Permut) using 1,000 permutations 145 

(Appendix S1, Text 1.2). Finally, to perceive the distribution pattern of genetic variation 146 

within the cpDNA dataset, analyses of molecular variance (AMOVA) were carried out in 147 

ARLEQUIN version 3.0 (Excoffier, Laval, & Schneider, 2005), with significance tests 148 

based on 1,000 permutations. Genetic variation was hierarchically partitioned into three 149 

levels: among groups, among populations within group, and within populations. 150 

The genetic structure and the potential genetic barriers between populations were 151 

analysed using SAMOVA version 1.0 (Dupanloup, Schneider, & Excoffier, 2002) based on 152 

a simulated annealing procedure (Appendix S1, Text 1.3). We calculated the FCT value for 153 

each group number from 2 to 8, and set the number of simulated annealing processes to 154 

100. 155 

To calculate divergence times, we adopted a two-step approach in BEAST v.1.7.5 156 

(Drummond & Rambaut, 2007), taking one to two haplotypes from each haplotype lineage, 157 

and adopting node ages from Zhang et al. (2018). Three additional outgroups, P. laurifolia, 158 

P. tremula, P. lasiocarpa, were included, using sequence data from Zhang et al. (2018). 159 

2.3 | Statistical Analysis of Microsatellite data 160 

Microsatellite data were read by GeneMarker (Softgenetics, Pennsylvania, USA) and then 161 

corrected by FlexiBin Excel macro (Amos et al., 2007). Allele sizes at each locus were 162 

scored and checked for possible genotyping errors like stuttering, large allele dropouts and 163 

null alleles in CERVUS v3.0 (Kalinowski et al., 2010). One locus (GCPM_126) at which 164 

high frequency null alleles (F [Null] > 0.4) were detected was eliminated, whereas the 165 

remaining 15 nSSR loci (Appendix S3, Table S2) were employed to estimate genetic 166 

diversity indices in GenAlEx version 6.5 (Peakall & Smouse, 2012) (Appendix S1, Text 167 

1.4). Subsequently, BayeScan v.2.1 (Foll & Gaggiotti, 2008) was employed to detect 168 

nonneutral evolutive forces that have acted on microsatellite loci, such as diversifying and 169 

purifying selection (Appendix S1, Text 1.4), and 10 neutral loci were retained to conduct 170 

the following population genetic analyses if not stated otherwise. 171 

To investigate population subdivision within P. davidiana, a Bayesian clustering method 172 

was used, as implemented in STRUCTURE v.2.3.4 based on microsatellite data (Pritchard 173 

et al., 2000) (Appendix S1, Text 1.5). STRUCTURE results were summarized and 174 

visualized using Structure Harvester (Earl & vonHoldt, 2012). To cross-validate the results 175 

of STRUCTURE, we also conducted a Principal Coordinates Analysis (PCoA) based on 176 

the nSSR data using GenAlEx version 6.5 (Peakall & Smouse, 2012). 177 
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For microsatellite data, analyses of molecular variance (AMOVA) were also carried out 178 

in ARLEQUIN version 3.0 (Excoffier et al., 2005), with significance tests based on 1,000 179 

permutations. 180 

2.4 | Isolation by distance, gene flow and demographic history 181 

In order to test the influence of geographical distance on the genetic structure, we first 182 

used the software GenAlEx v 6.5 (Peakall & Smouse, 2012) to obtain the matrix of 183 

geographic distances between each pair of populations, and then imported the matrix of 184 

FST values calculated by the software ARLEQUIN v 3.5 into EXCEL. Subsequently, a 185 

Mantel test (between geographic distance and genetic differentiation, i.e. isolation-by-186 

distance test) was performed using the software GenAlEx v 6.5, with 1,000 random 187 

permutations. With similar parameter setting, a stratified Mantel test was conducted for 188 

core populations of each putative intraspecific groups considering the results from 189 

STRUCTURE based on nSSRs and SAMOVA based on cpDNA. 190 

To estimate the amount and direction of gene flow between groups of P. davidiana based 191 

on neutral nSSR data, the software MIGRATE v 3.3.1 was employed (Beerli & Felsenstein, 192 

1999; Beerli and Palczewski, 2010). The parameters M (migration rate divided by the 193 

mutation rate) and the effective number of migrants (2Nem, where Ne is effective population 194 

size and m is the migration rate) were calculated using the Brownian motion model 195 

(Appendix S1, Text 1.6). 196 

Given that MIGRATE analyses assume a constant effective population size for each 197 

lineage, which might be violated in our case according to the STRUCTURE results, we 198 

also analyzed our data using DIYABC, which allowed us to test explicitly the hypotheses 199 

of demographic history that each lineage may have experienced. To do so, we have 200 

simulated and compared seven scenarios concerning the history of effective population size 201 

changes for each presumed evolutionary lineage, using the approximate Bayesian 202 

computation procedure (Beaumont, Zhang & Balding, 2002) as implemented in DIYABC 203 

v.1.0.4.46 (Cornuet et al., 2008) based on nSSR data. The seven possible scenarios allowed 204 

for ancient (100,000 to 450,000 generations ago) expansion, contraction, or neither, 205 

followed by recent (one to 20,000 generations ago) expansion, contraction, or neither 206 

(Appendix S2, Fig. S1; full details were given in Appendix S3, Table S3 and Appendix S1, 207 

Text 1.7). Using a direct approach and logistic regression analyses, the posterior probability 208 

of all scenarios was calculated and compared. Following Macaya-Sanz et al. (2012) we set 209 

the generation time of P. davidiana as 40 years, with a span of 20 to 60 years. To alleviate 210 

the impact of inter-lineage gene flow on the testing of demographic history scenarios, when 211 

K = 2 according to STRUCTURE results, all individuals that were potential hybrids 212 



7 

(identified as such from Q values > 0.125 for each of the two assumed genetic groups), 213 

were eliminated. 214 

2.5 | Species distribution modellings (SDMs) 215 

SDMs were conducted using the maximum entropy method implemented in MAXENT 216 

v.3.2.1 (Phillips et al., 2006) to predict the distribution of potentially suitable habitat for P. 217 

davidiana in four time periods: the present, the Last Glacial Maximum (LGM; c. 21 218 

thousands years ago (kya)), the Last Interglacial (LIG; c. 130 kya), and the Mid-Holocene 219 

(MH; c. 6 kya). Nineteen bioclimatic variables at 2.5-arc-minute resolution were 220 

downloaded from the WorldClim database (Hijmans et al., 2005). Strong co-linearity 221 

between bioclimatic variables may affect the accuracy of the model. Therefore, a Pearson 222 

correlation test was performed on these bioclimatic variables, across the 40 populations. 223 

Eight bioclimatic variables between which all pairwise Pearson correlation coefficients r 224 

were  0.70 (Appendix S3, Table S4) were retained and used for subsequent SDM analysis. 225 

For full details of SDM analysis see Appendix S1, Text 1.8. DIVA-GIS v.7.5 (Hijmans et 226 

al., 2001) was used to map the distribution of habitat suitability. We also conducted a 227 

Principal Component Analysis (PCA) of the eight bioclimatic variables that were used for 228 

SDMs, based on two R packages: FactoMineR (Lê, Josse & Husson, 2008) and FactoExtra 229 

(Kassambara & Mundt, 2017). 230 

The SDM analysis was repeated in the same way for five further time slices, except that 231 

in these cases only 14 bioclimatic factors were available, and only six were retained 232 

following Pearson correlation tests (Appendix S3, Table S5). These time slices were the 233 

Younger Dryas Stadial (12.9-11.7 Ka), the Bølling-Allerød period (14.7-12.9 Ka), the 234 

Marine Isotope Stage 19 (MIS19) in the Pleistocene (~787 ka), the mid-Pliocene Warm 235 

Period (~3.264–3.025 million years ago [Ma]), and MIS M2 in the Late Pliocene (~3.3 Ma).  236 

All SDM analyses were conducted on the full set of 40 populations, and also on each of 237 

the two subsets CNCR and NECR defined by nSSR data (see Results; Figs 2a, d). 238 

 239 

3 | RESULTS 240 

3.1 | Variations of nuclear microsatellite data and population subdivision 241 

Across all 541 individuals and 40 populations genotyped, a total of 150 alleles were 242 

scored from 15 microsatellite loci, and the number of alleles per locus varied from 4 to 19 243 

alleles, with an average of 10 (Appendix S3, Table S6). Among populations, the mean 244 

values for descriptive variables were: number of alleles (Aa) was 35.73, the number of 245 

effective alleles (Ae) was 2.43, the Shannon index (I) was 0.86, the observed heterozygosity 246 

(Ho) was 0.41, the expected heterozygosity (He) was 0.46, and the allelic richness based on 247 
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5 samples (Ar_5) was 2.23 (Appendix S3, Table S7). The genetic differentiation index (FST) 248 

and standardized FST (FST’) averaged across all loci was 0.18 and 0.45 (Appendix S3, Table 249 

S6), indicating a pronounced level of genetic differentiation among populations. 250 

For the ten neutral nSSR loci (40 populations, n = 541), STRUCTURE yielded the 251 

highest likelihood when K = 2 (Appendix S2, Fig. S2a, b), suggesting the existence of two 252 

genetic clusters, and subsequently two population groups (Fig. 2a). We also conducted 253 

STRUCTURE for the five non-neutral loci, as well as all 15 loci, both suggested similar 254 

population grouping schemes when K = 2 (Appendix S3 Fig. S2c, d). All populations of 255 

the CNCR group (populations 1-19; central and northern China region) except p15 (44%) 256 

had between 56% and 98% of genetic ancestry assigned to cluster I, whereas all populations 257 

in the NECR group (populations 20-40; Northeastern China Region) had between 73% and 258 

96% of genetic ancestry assigned to cluster II (Fig. 2a; Table S8 in Appendix S3). The 259 

PCoA based on genetic distance showed a similar population genetic structure (Fig. 2c). 260 

Hence, all subsequent analyses that considered information from nuclear DNA, were 261 

conducted considering this subdivision of sampled populations into CNCR and NECR. 262 

3.2 | Variations and distribution pattern of cpDNA sequences 263 

The total length of the aligned matrix that concatenated the four cpDNA fragments was 264 

2,296 bp, among which 27 substitutions and 28 indels were detected (Tables S9, S10 in 265 

Appendix S3). A total of 72 haplotypes (Tables S9, S10 in Appendix S3) were differentiated 266 

based on these, but 37 were excluded because they were singletons that could have resulted 267 

from PCR errors (Tables S9, S10 in Appendix S3); therefore 35 haplotypes were retained 268 

(Fig. 3b). Nevertheless, for reference, we have presented basic analyses based on all 72 269 

haplotypes in the supplemental information (Appendix S2, Fig. S3). 270 

The phylogenetic network of these 35 haplotypes revealed five distinct haplotype 271 

lineages (HLs) with adjacent geographical ranges yet little overlap (Fig. 3b). Haplotype 272 

lineages A, B, C, D, and E comprised haplotypes H8-H15, H16-17, H18-26, H29-35, and 273 

H1-H7, respectively (Fig. 3b), and molecular dating suggested that HL-E diverged from 274 

the others (0.90-) 2.50 (-3.43) Ma (i.e. 2.50 Ma with 95% HPD: 3.43-0.90 Ma; Appendix 275 

S2, Fig. S4). In general, HL-E occurred mainly in NECR, whereas the other four mostly 276 

(HL-A and HL-D) or only (HL-B and HL-C) occurred in CNCR (Fig. 3a). Nevertheless, 277 

the admixture of different haplotypes and haplogroups was found to be prevalent, with 17 278 

CNCR and 10 NECR populations containing ≥2 haplogroups (Fig. 3) (see more details in 279 

Appendix S1, Text 1.9). Because HL-E corresponds mostly but not precisely with NECR, 280 

we use the terms cpNECR and cpCNCR to describe the two biogeographic groups defined 281 

by cpDNA data (Figs 2d, 3a). 282 
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3.3 | Population genetic structure 283 

Our AMOVA analysis based on nSSR data revealed that 79.93% of the overall variation 284 

was within populations, with 13.38% among populations within groups, and just 6.69% 285 

between groups (Table 1). Genetic differentiation among and within populations accounted 286 

for 14.86% and 85.14% respectively for CNCR (Appendix S3, Table S11), and 7.67% and 287 

92.33% respectively for NECR (Appendix S3, Table S12). The isolation-by-distance test 288 

revealed that pairwise geographical distance was weakly but significantly correlated with 289 

genetic differentiation in all populations (R2 = 0.1124, P = 0.0003; Appendix S2, Fig. S5a) 290 

and core NECR populations (p24-38; R2 = 0.2606, P = 0.0002; Appendix S2, Fig. S5c), yet 291 

no significant correlation was found in core CNCR populations (p1, p3-10, p12-19; R2 = 292 

0.0031, P = 0.67353; Appendix S2, Fig. S5b). The core NECR and CNCR populations 293 

correspond to cpDNA SAMOVA groups IV and II, respectively (see below). 294 

AMOVA based on cpDNA found that 45.69% of variation was distributed within 295 

populations, 39.01% was portioned among populations within groups, and 15.30% 296 

between groups (Table 1). For CNCR, 52.35% of variation was among populations and 297 

47.65% within; for NECR these values were 39.52% and 60.48%, respectively (Tables S11, 298 

S12 in Appendix S3). The permutation test (based on cpDNA) indicated that NST was 299 

significantly higher than GST across all populations, and also when either CNCR or NECR 300 

were considered separately (P < 0.05 in each case; Table S13 in Appendix S3), pointing to 301 

a strong phylogeographical structure for P. davidiana. 302 

SAMOVA based on cpDNA showed the highest FCT value for a model with six 303 

population groups (Appendix S3, Table S14; Fig. 3a). However, four of these groups 304 

contained only one population each (Fig. 3a). Of the two large groups, IV comprised fifteen 305 

NECR populations (p24-p38), but the three NECR populations furthest west (p21-p23) 306 

were placed in Group II, together with most CNCR populations (p1, p3-p10, p12-p20) (Fig. 307 

3a). Group IV individuals mostly possess HL-E haplotypes, whereas other haplogroups 308 

occurred mainly in group II. 309 

3.4 | Demographic history of NECR and CNCR, and gene flow between them 310 

In the DIYABC analyses, scenario 7 was consistently the best supported based on direct 311 

estimate, logistic regression and PCA plots (Figs S6, S7, S8, S9 in Appendix S2) and also 312 

the least error-prone (Tables S15, S16 in Appendix S3) for each of CNCR and NECR 313 

(excluding p20-23). In this scenario, P. davidiana in each region independently experienced 314 

an ancient expansion and a recent bottleneck (i.e. contraction then expansion). Expansion 315 

in CNCR and NECR groups occurred around 226.8 Ka and 214.8 Ka, respectively, and a 316 

strong bottleneck occurred between 20.0 and 10.7 Ka for CNCR, and between 23.7 and 317 
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13.2 Ka for NECR (Fig. 4; Tables S17, S18 in Appendix S3). The bottleneck event in NECR 318 

(N2/N3≈1/382) was much stronger than that in CNCR (N2/N3≈1/37). 319 

The MIGRATE analyses based on the ten neutral nSSR loci under both the variable theta 320 

and the same theta models output results where the posterior distribution of all parameters 321 

exhibited a normal distribution and the effective sampling size of all parameters exceed 322 

200, indicating that both models reached convergence (Figs S10, S11). The MIGRATE 323 

analyses based on the variable theta model suggested that the mean estimated gene flow 324 

(2Nem) from NECR to CNCR (excluding p20-23) is 22.57, which is smaller than that in 325 

the opposite direction (36.88). However, based on the same theta model, gene flow in each 326 

direction was similar, i.e. 16.24 from NECR to CNCR, vs 15.27 the other way (Table 2, 327 

Fig. 2b). Meanwhile, the estimated Ne of CNCR was slightly larger under the variable theta 328 

model (173.91 vs. 147.55) but smaller under the same theta model (100.02 vs 116.35; Table 329 

2, Fig. 2b). 330 

3.5 | Species distribution modelling 331 

The AUC values of SDMs varied from 0.931 to 0.985 (mean 0.960) in CNCR and from 332 

0.973 to 0.981 (mean 0.978) in NECR, which indicated that all models performed better 333 

than random expectation. Variable jackknife analyses suggested that Mean Temperature of 334 

Driest Quarter (35.2%), was the environmental variable that contributed most to potential 335 

distribution modelling for CNCR, whereas Annual Precipitation (34.6%) and Mean 336 

Temperature of Driest Quarter (32.9%) were the two environmental variables that 337 

contributed most to potential distribution modeling for NECR (Appendix S3, Table S19). 338 

The predicted current distribution range of both NECR and CNCR of P. davidiana was 339 

highly consistent with the actual occurrence of our sampled populations (Figs 5a-b), and 340 

also very similar to that during the mid-Holocene, especially for CNCR (Figs 5a, c). 341 

However, when only the potential distribution with high habitat suitability (>0.6) is 342 

considered, then compared to the current predicted range (Fig. 5a), CNCR occupied a 343 

similar range yet with a slightly larger and continuous distribution in its eastern range 344 

during the MH (Fig. 5c) and its central range during the LGM (Figs 5e), whereas it migrated 345 

southward and westward and occupied a fragmented range during the LIG (Fig. 5g). The 346 

SDMs also suggested that NECR migrated southwards during the LIG, and could 347 

potentially have disjunctly occupied the Qinghai-Tibetan Plateau (Fig. 5h), which is ~2000 348 

km from the rest of its predicted range, and not suitable for it at present (Fig. 5b). As with 349 

CNCR, a larger continuous distribution was predicted for NECR during the LGM (Fig. 5f), 350 

yet unlike CNCR, the range of NECR was shifted some way southwestwards at this time, 351 

expanding southward as far as ca. N34° while its northern fringe retreated. At the same 352 

time, the potential distribution of NECR was similar, by and large, between the present 353 
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(Fig. 5b) and the MH (Fig. 5d), although its MH distribution extended further southward, 354 

by ca. 5° to N35°. 355 

According to the niche identity test undertaken using ENMTools, the observed values of 356 

Schoener’s D (0.354) and Hellinger’s I (0.639) were significantly different from the null 357 

distributions, indicating that CNCR and NECR were ecologically distinct lineages 358 

(Appendix S2, Fig. S12). The results of PCA analysis for climate variables were consistent 359 

with SDMs (Appendix S2, Fig. S13). 360 

Concerning the connection between the predicted distribution of CNCR and NECR, 361 

SDMs suggested that they were connected by areas of no more than intermediate suitability 362 

during LGM, the Holocene and the present (Figs 5a-f). During the LIG, the suitable area 363 

for NECR included the Qinghai-Tibet Plateau, as noted above, and overlapped with that of 364 

CNCR (Figs 5g-h), although that part of NECR’s potential range might not have been 365 

occupied. For time periods with fewer bioclimatic variables available, the potential 366 

distribution for NECR was larger during each of the Younger Dryas Stadial (12.9-11.7 Ka), 367 

the Bølling-Allerød period (14.7-12.9 Ka) and the MIS19 in the Pleistocene (~787 ka), yet 368 

smaller and fragmented for CNCR in all these periods (Appendix S2, Figs S14a-h), 369 

generating a few areas of overlapping suitability between CNCR and NECR, mostly around 370 

central China. Furthermore, during two Pliocene time slices (~3.264–3.025 Ma and ~3.3 371 

Ma, Figs S14i-l in Appendix S2), the potential distribution areas were narrower for CNCR 372 

and slightly larger but less continuous (compared to the present) for NECR, but with less 373 

potential overlap between them. 374 

 375 

4 | DISCUSSION 376 

Both cpDNA (Fig. 3) and nSSR markers (under both STRUCTURE and PCoA; Figs 2, 377 

S15) clearly divided Populus davidiana into two intraspecific groups of populations in the 378 

northeastern China region (NECR), and the central and northern China region (CNCR). 379 

However, the boundary between regions is different between markers, lying around 118ºE 380 

for nSSRs (CNCR vs NECR), and 122ºE for cpDNA (cpCNCR vs cpNECR) (Figs 2, 3). 381 

Moreover, historical bi-directional gene flow between the NECR and CNCR regions was 382 

indicated for both SSRs and cpDNA data (Figs 2b, 3a). An identity test of ecological niches 383 

reveals clear habitat separation between the two (Fig. 6), and SDM analysis also indicates 384 

strong but incomplete separation between these groupings, with each having only medium 385 

habitat suitability to the main range of the other (Figs 5a-b). 386 

4.1 | The separation of NECR and CNCR lineages reflects the impact of different 387 

factors 388 
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Network analysis resolved two major cpDNA haplotype clades. Of these, HL-E was the 389 

dominant haplotype within cpNECR (91% of individuals), whereas HL-A+B+C+D 390 

accounted for 93% of individuals in cpCNCR. Hence it seems likely that this biogeographic 391 

subdivision originated with divergence between these two clades, but bidirectional 392 

haplotype flow between them followed. The two clades diverged (0.90-) 2.50 (-3.43) Ma 393 

(Appendix S2, Fig. S4), i.e. around the Pliocene/Quaternary boundary. This is somewhat 394 

younger than the estimated origin of similar central-northern China vs. northeastern China 395 

divides within Acer mono ((4.13-) 6.98 (-9.84) Ma; Guo et al., 2014), and Lindera 396 

obtusiloba ((1.13-) 4.40 (-8.75) Ma; Ye et al., 2017b), and between Juglans mandshurica 397 

and J. cathayensis ((5.97-) 10.93 (-17.21) Ma; (Bai et al., 2016), but older than that between 398 

Quercus liaotungensis and Q. mongolica ((0.20-) 0.92-2.15 (-9.23) Ma; Yang et al., 2016), 399 

and subdivision within Bupleurum longiradiatum s.s. (<1.54 Ma; Zhao et al., 2013). 400 

Therefore, P. davidiana may be unique among these, in that intraspecific divergence might 401 

have been caused by the onset of the Quaternary, implying a likely role of climatic changes 402 

at that time. 403 

Populus davidiana diverged from P. tremoloides, then P. tremula and finally P. 404 

rotundifolia during the Pliocene and Quaternary (Du et al., 2015; Zheng et al., 2017; Hou 405 

et al., 2020; Li et al., 2020), in the process probably moving from higher to lower latitudes 406 

(Du et al., 2015), and undergoing a long history of range shifts. Around the Pliocene-407 

Quaternary boundary (2.5 Ma), the two major cpDNA lineages diverged. SDM analysis for 408 

the closest available time periods (~3.3 Ma and ~3.264–3.025 Ma; Figs S14i-j, S14k-l in 409 

Appendix S2), indicate a more restricted range for P. davidiana than more recent periods, 410 

which might have initiated geographical and ecological separation between CNCR and 411 

NECR. However, differences between SDMs for those two periods indicate ranges 412 

fluctuating with the climate, so there could have been periods of contact later on. Based on 413 

late Quaternary (LIG and LGM; Figs 5e-h) SDMs, the ranges of CNCR and NECR might 414 

have remained largely separated for most of the Quaternary, though again varying climates 415 

might have allowed overlap during some interglacials. The degree of predicted overlap 416 

increased slightly after the LGM during the Younger Dryas Stadial, the Bølling-Allerød 417 

period, the Holocene and the present (Figs 5a-d) following the step-wise northward retreat 418 

of the southern edge of NECR, accounting perhaps for the evidence of gene flow between 419 

regions (Figs 2a-b, 3a, and see below). However, even if a substantial gap existed between 420 

NECR and CNCR during the Quaternary, this might not have prevented gene flow at the 421 

time, because Eleutherococcus senticosus (Wang et al., 2016) and Bupleurum 422 

longiradiatum (Zhao et al., 2013), though not Lindera obtusiloba (Ye et al., 2017b), show 423 

evidence of gene flow and shared haplotypes across a range gap of 400 km or more in this 424 
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region (Figs 2a, 3a). Our MIGRATE analyses based on nSSRs (Table 2) as well as 425 

fastsimcoal2 analyses based on population genomic data (Hou et al., 2020) both suggested 426 

that bi-directional historical gene flow may have occurred between NECR and CNCR 427 

lineages after their divergence. Nevertheless, our SDMs support that intrinsic factors, i.e. 428 

differentiated ecological niches between CNCR and NECR through different time periods, 429 

may have been more important for driving their separation than extrinsic factors, such as 430 

the arid belt in northern China. 431 

In addition to the above, the divergence between the two lineages may have been 432 

promoted by genetic drift, exacerbated in each lineage by a recent bottleneck event. Our 433 

DIYABC inferences revealed severe bottleneck events, which started around the LGM and 434 

ended around the beginning of the postglacial period (i.e. the Holocene), for both for NECR 435 

(ca. 23.7 to 13.2 Ka) and CNCR (ca. 20.0 to 10.7 Ka) (Fig. 4; Tables S17, S18 in Appendix 436 

S3); MSMC analyses based on population genomic data, from a sample of fewer 437 

populations and individuals of P. davidiana, also suggested a bottleneck event for both 438 

lineages (Hou et al., 2020). In addition, a similar demographic scenario was also favored 439 

for a congener, P. adenopoda, that occurs in subtropical China (Fan et al., 2018). Perhaps 440 

because the NECR populations occupy higher latitudes than the CNCR population, NECR 441 

experienced not only an earlier (see above) but also stronger bottleneck event, i.e. a ratio 442 

of 1/382 between bottleneck and pre-bottleneck Ne, compared to a 1/37 ratio for CNCR. 443 

This might be due to climate shifts, since both lineages might have experienced southward 444 

retreat during the Bølling-Allerød period, 14.7- 12.9 Ka, (Appendix S2, Figs S14h-i) and 445 

the Younger Dryas Stadial, 12.9-11.7 Ka (Appendix S2, Figs S14e-f). During these periods, 446 

the area of high habitat suitability (>0.6) excludes ~half or more of current occurrence sites. 447 

However, while DIYABC and SDM results appear to be consistent with one another, many 448 

sources of uncertainty apply for ABC inferences, concerning the choice of models, 449 

assumptions about generation times, overlapping of generations, confidence interval of 450 

estimated parameters, and especially natural selection and gene flow (Kuhner, 2009; Tsuda 451 

et al., 2015, 2017). Specifically, we were not able to consider gene flow between CNCR 452 

and NECR in our ABC model, and this may have affected the accuracy of our model testing.  453 

Instead, we sought to minimise this issue by eliminating non-neutral loci as well as 454 

individuals that are potential F1 and BC hybrids in both lineages. 455 

Considering the substantial difference between the ecological niches of CNCR and 456 

NECR lineages (Appendix S2, Fig. S12), it is likely that natural selection may have played 457 

a role during lineage divergence. The BayeScan analysis revealed that five of 15 458 

microsatellite loci examined may have experienced natural selection, and based on 459 

Bayesian clustering analyses, these five non-neutral loci produce population subdivisions 460 
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similar to those for all loci, as do the ten neutral loci (Appendix S2, Fig. S2c, d). Such a 461 

congruence between non-neutral and neutral markers, as well as slightly higher average 462 

FST’ value of the former (0.53 vs. 0.45; Appendix S3, Table S6), may be explained by a 463 

model wherein natural selection acted on non-neutral loci, lead to divergence of non-neutral 464 

loci, after which divergence hitchhiking and genomic hitchhiking caused a divergence of 465 

neutral loci (e.g. Feder et al., 2012). This has been partly confirmed by a recent population 466 

genomic survey (Hou et al., 2020). It is also possible that natural selection act upon non-467 

neutral loci after allopatric divergence of the two lineages. Unfortunately, the evidence 468 

collected here is not sufficient to test all of the above hypotheses thoroughly. We propose 469 

that increased genome coverage, coupled with the dense population sampling employed 470 

here, will enable a better testing on the relative roles of ecological barriers, demographic 471 

history, genetic drift and natural selection in driving the lineage divergence of P. davidiana 472 

(e.g. Wang et al., 2016, 2020; Ma et al., 2018; Hou et al., 2020). 473 

4.2 | A southwesterly prevailing wind in the spring skewed the intraspecific 474 

phylogeographic break within P. davidiana 475 

One interesting intraspecific divergence pattern in P. davidiana is that the boundary 476 

between NECR and CNCR regions is different between markers. SAMOVA separated two 477 

regional groupings, each comprising one large group and two single population groups, 478 

here termed the cpCNCR (p1-23) and cpNECR (p24-40; Fig. 3a), with the boundary around 479 

122ºE. Conversely, nSSR data separates CNCR (p1-19) from NECR (p20-40) at around 480 

118ºE. Therefore, there is consensus between nSSR and cpDNA markers regarding 481 

populations to the west of 118ºE (p1-19, sCNCR) and those to the east of 122ºE (p24-40, 482 

sNECR); however, populations 20-23 (termed as introgressed populations in Fig. 2d) 483 

inhabit a region of overlap and discordance between 118ºE and 122ºE, because they have 484 

northeastern nDNA but southwestern cpDNA. These occupy an area that SDMs suggested 485 

to be a contact zone of the two groups (Figs 5a-b). Among similarly distributed taxa that 486 

have been biogeographically examined, all show a northeast-southwest subdivision around 487 

this region. Indeed, the overlap area (p20-23) corresponds closely with the region of 488 

overlap between two Quercus species that share many haplotypes (Yang et al., 2016), a gap 489 

in the distribution of Eleutherococcus senticosus (Wang et al., 2016), and a west to east 490 

dividing line within Corylus mandshurica (Zong et al., 2015) (Fig. 2a). However, 491 

comparable dividing lines within Acer mono and for Juglans mandshurica vs J. cathayensis 492 

both lie further southwest (Bai et al., 2016; Guo et al., 2014; Liu & Ko, 2014), as do the 493 

large range gaps within Lindera obtusifolia (Ye et al., 2017b) and Bupleurum 494 

longiradiatum s.s. (Zhao et al., 2013) (Fig. 2a). Curiously, the width of the gap does not 495 

correlate with the degree of detectable gene flow across these examples, because there is 496 
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no haplotype overlap within A. mono (Guo et al., 2014), and only very limited overlap (one 497 

population) in Juglans (Bai et al., 2016); conversely, ample gene flow across the gaps is 498 

detectable in Eleutherococcus (Wang et al., 2016), though not Lindera (Ye et al., 2017b) 499 

or Bupleurum (Zhao et al., 2013). This might be due to past range shifts in these species. 500 

Notably, all of these dividing lines lie to the west of that between the temperate coniferous 501 

broadleaved mixed forest vegetation zone and the warm temperate deciduous broadleaved 502 

forest zone, which lies around 124ºE and between p25 and p26 (Figs 1, 2a). 503 

In Populus, cpDNA is maternally inherited and hence dispersed by seeds only, whereas 504 

nDNA is bi-parentally inherited and dispersed by both seeds and pollen. However, the 505 

prevailing wind direction during the flowering (March-April) and fruiting (April-May) 506 

seasons of P. davidiana is SW to NE (Fig. 6). This might facilitate the migration of insects 507 

into Northeastern China (Chen et al., 1989), and explain why asymmetric nuclear gene 508 

flow is mainly SW to NE between Quercus liaotangensis and Q. mongolica (Yang et al., 509 

2016). It might also explain why the CNCR and NECR boundary, as reflected by nSSRs, 510 

lies further northeast than those in other species discussed above. Quercus seeds are 511 

unaffected by wind, but Populus seed is light and has plumes for wind dispersal (Fang, 512 

Zhao, & Skvortsov, 1999). Based on a calculated falling velocity of only 0.23 m/s for P. 513 

sieboldii (Minami & Azuma, 2003), and a calculation for the slightly faster falling plumed 514 

seeds of Asclepias syriaca (Matlack, 1987), Populus seeds might typically travel 18 km in 515 

10 kph winds. At the same time, pollen typically travels 0.05-10 Km but may also travel 516 

more than 100 Km (Ashley, 2010). Hence, the prevailing wind from SW to NE might have 517 

facilitated both seed flow and pollen flow from SW to NE for P. davidiana, and therefore 518 

skewed the nSSRs boundary between southwestern and northeastern populations, moving 519 

it eastward. 520 

Meanwhile, the cpDNA dividing line of P. davidiana lies further east than the nSSR 521 

dividing line, as well as dividing lines in most of the other species mentioned (Fig. 2a). A 522 

hypothesis to explain this pattern is a series of hybridization events that have led to the 523 

introgression of CNCR cpDNA into NECR populations. SDM analysis suggests that 524 

CNCR and NECR occupy different niches: the CNCR lineage is mainly affected by Mean 525 

Temperature of the Driest Quarter (bio_9), whereas both Mean Temperature of the Driest 526 

Quarter (bio_9) and Annual Precipitation (bio_12) may have affected NECR (Appendix S3, 527 

Table S19). SDM analysis suggests that CNCR material might have invaded populations 528 

p20-23 while NECR was retreating northward following the middle Holocene (Figs 5c-d). 529 

When a few CNCR immigrants, probably via seed propelled by the prevailing 530 

southwesterly wind, arrived among populations p20-23 and encountered native trees, they 531 

may have formed inter-lineage hybrids. Assuming the existence of pollen competition 532 
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mechanisms that favour material of the same lineage, immigrant individuals would have 533 

tended to be the female parent to hybrid seed due to a scarcity of pollen from the same 534 

lineage. This would gradually lead over time to introgressed individuals tending to possess 535 

SW cpDNA and mostly NE nSSRs. If introgressed individuals had a selective advantage 536 

over standing NECR stock at that time, perhaps because the local climate was becoming 537 

more suitable to SW material, then introgressed individuals might have gradually replaced 538 

most native trees in this area. This process, therefore, may have moved the cpDNA division 539 

line to the east between p23 and p24, while the nSSRs division line remained static between 540 

p19 and p20. 541 

Other species exhibiting phylogeographic breaks in this area are either not wind-542 

dispersed (Quercus, Juglans, Lindera, Eleutherococcus, and Corylus) or have winged seeds 543 

that are either larger (Acer mono) or borne closer to the ground (Bupleurum) (Guo et al., 544 

2014; Zhao et al., 2013). Hence none of these may respond to the prevailing wind as 545 

strongly as P. davidiana, and this could explain why the Populus cpDNA dividing line is 546 

further east than for most of the other species mentioned (Fig. 2a). Curiously, Juglans, with 547 

similar seed and pollen dispersal to Quercus, exhibits very little between species gene flow 548 

(Bai et al., 2016), implying that other factors like historical range shifts may also be 549 

important in these cases. Bird-dispersal of edible fruits could explain the ample gene flow 550 

in Eleutherococcus (Wang et al., 2016). 551 

In conclusion, we have presented evidence for a phylogeographic break within P. 552 

davidiana, where the predominant southwesterly wind in the spring may have skewed the 553 

boundary between NECR and CNCR, moving it northeastward relative to other species, 554 

and separating the boundaries indicated by cpDNA and nuclear data. The ecological 555 

separation between NECR and CNCR may have formed since the divergence of major 556 

cpDNA haplotype groups around the Pliocene-Pleistocene boundary. Our study highlights 557 

that biological traits, climate and biogeographic history should all be considered when 558 

examining the genetic and ecological differentiation between closely related taxa. 559 

 560 
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TABLE 1 Analysis of molecular variance (AMOVA) for the two population groups (two 780 

putative lineages, Populus davidiana in CNCR and P. davidiana in NECR) based on nSSR 781 

and cpDNA data. 782 

Source of variation df SS VC V% F-statistic 

SSR markers      

Among groups 1 110.18  0.20  6.69 FCT = 0.07** 

Among populations 

within groups 
39 543.17  0.40  13.38 

FST = 0.13** 

 

Within populations 1041 2562.10  2.39  79.93 FSC = 0.11** 

Total 1081 3215.46  2.99   FST’ = 0.45a 

CpDNA      

Among groups 1 127.26 0.59 15.30 FCT = 0.15** 

Among populations 

within groups 

38 605.80 1.51 39.01 FST = 0.54** 

Within populations 336 594.01 1.77 45.69 FSC = 0.46** 

Total 375 1327.06 3.87  FST’ = 0.77 

 783 

Abbreviations: df, degrees of freedom; SS, sum of squares; VC, variance components; V%, 784 

percent variation; FST, the proportion of differentiation among populations; FSC, the 785 

proportion of differentiation among populations within species; FCT, the proportion of 786 

differentiation among species; **, P < 0.01, 1,000 permutations. a the mean FST’ value, 787 

average over ten microsatellite loci (for FST’ of each locus, see Table S6). 788 
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TABLE 2 Effective population sizes (Ne) and the effective number of immigrants per generation 789 

(4Nem) between the consensus CNCR (p1-19) and NCER (p24-40) of Populus davidiana based on 790 

the ten neutral nSSR loci. 791 

   4 Nem 

  Ne 4 Nem CNCR→ 4 Nem NECR→ 

Variable Theta sCNCR 173.91 

(126.67-218.33) 

 22.57 

(0.00-61.13) 

sNECR 147.55 

 (100.00-195.00) 

36.88 

(5.33-80.60) 

 

Same Theta 

 

sCNCR 100.02 

 (56.67-141.67) 

 16.24 

(1.13-41.93) 

sNECR 116.35 

(35.00-168.33) 

15.27 

(0.00-43.77) 

 

 792 

Abbreviations: Ne, effective population size; μ, mutation rate (μ= 10-3 per gamete per generation); 793 

4 Nem CNCR→, the effective number of migrants from group CNCR to groups NECR; 4 Nem 794 

NECR→, the effective number of migrants from group NECR to groups CNCR; the mean value 795 

of θ was adopted to calculate the effective number of immigrants per generation. 796 

 797 

  798 
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FIGURE CAPTIONS 799 

 800 

FIGURE 1  A map showing the sampling locations of 40 populations of Populus davidiana 801 

(black discs) and vegetation zones within China (Editorial Committee for Vegetation Atlas of 802 

China, 2001). Abbreviations: A, Cold temperate deciduous coniferous forest; B, Temperate 803 

coniferous broad-leaved mixed forest; C, Warm temperate deciduous broad-leaved forest; D, 804 

Subtropical evergreen broad-leaved forest; E, Tropical forests; F, Temperate grassland; G, 805 

Temperate deserts; H, Alpine vegetation of the Qinghai-Tibet Plateau. 806 

FIGURE 2  A brief summary of the geographic distribution, genetic clustering and gene flow 807 

between groupings of Populus davidiana based on ten neutral nuclear microsatellite (nSSR) loci. 808 

(a) Geographic origin of the 40 populations of P. davidiana and their genetic components in regard 809 

to genetic clusters at the most likely K = 2. West to east dividing lines found in other seven species 810 

are inserted. (b) Illustrative representation of the effective population size (Ne) and effective 811 

number of migrants (4Nem) among the two population groups under two different hypotheses: (1) 812 

variable theta and (2) same theta. (c) Principal Coordinates Analysis (PCoA) of the 40 populations 813 

of P. davidiana, see Fig. S15 for more details. (d) Histogram of the STRUCTURE assignment test 814 

for 40 populations of P. davidiana based on ten neutral nSSR loci. 815 

FIGURE 3  A brief summary of the geographic distribution, SAMOVA groupings and 816 

phylogenetic relationships of cpDNA haplotypes of Populus davidiana. (a) Geological distribution 817 

of haplotype lineages (colors in each pie) and SAMOVA groupings (dashed lines) and (b) 818 

maximum-parsimony network of 35 non-singleton haplotypes. Population codes are identified in 819 

Table S1. In (a), each section in any pie represent a distinct haplotype in that population. In (b), 820 

the unlabelled small black dots represent missing haplotypes, and circle sizes are proportional to 821 

the number of samples per haplotype. 822 

FIGURE 4  Schematic representation for the estimates of effective population size (Ne) and the 823 

Ne-transition time of the best DIYABC scenarios (Sc7) for CNCR and NECR, respectively. Black 824 

vertical bars and white horizontal bars represent 95% confidence interval for the estimates of Ne 825 

and Ne-transition time, respectively. Note that the y-axis of Ne value is in Log10 format. 826 
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FIGURE 5   Habitat suitability of the two groups of Populus davidiana, CNCR (left) and NECR 827 

(right), from the late Quaternary to the present based on ecological niche modelling using 828 

MAXENT. Predicted distributions are shown for: the present day (a) CNCR and (b) NECR; the 829 

middle Holocene (MH) (c) CNCR and (d) NECR; the last glacial maximum (LGM) (e) CNCR and 830 

(f) NECR; and the last interglacial (LIG) for (g) CNCR and (h) NECR. The bioclimatic variables 831 

adopted for species distribution modelling for all time slices were downloaded from the WorldClim 832 

database (Hijmans et al., 2005). 833 

FIGURE 6  Prevalent wind direction in the regions around Beijing, Hebei and Liaoning, where 834 

cpDNA and nSSR division line between groups are inconsistent, in March (black arrow), April 835 

(yellow arrow) and May (red arrow) averaged over 30 years from 1981 to 2010. Note that west to 836 

east dividing lines found in Juglans spp. (white dash line) and Acer mono (purple dash line) are 837 

inserted. 838 


