984 research outputs found

    Novel Phases in the Field Induced Spin Density Wave State in (TMTSF)_2PF_6

    Get PDF
    Magnetoresistance measurements on the quasi one-dimensional organic conductor (TMTSF)_2PF_6 performed in magnetic fields B up to 16T, temperatures T down to 0.12K and under pressures P up to 14kbar have revealed new phases on its P-B-T phase diagram. We found a new boundary which subdivides the field induced spin density wave (FISDW) phase diagram into two regions. We showed that a low-temperature region of the FISDW diagram is characterized by a hysteresis behavior typical for the first order transitions, as observed in a number of studies. In contrast to the common believe, in high temperature region of the FISDW phase diagram, the hysteresis and, hence, the first order transitions were found to disappear. Nevertheless, sharp changes in the resistivity slope are observed both in the low and high temperature domains indicating that the cascade of transitions between different subphases exists over all range of the FISDW state. We also found that the temperature dependence of the resistance (at a constant B) changes sign at about the same boundary. We compare these results with recent theoretical models.Comment: LaTex, 4 pages, 4 figure

    Spin-density-wave instabilities in the organic conductor (TMTSF)_2ClO_4: Role of anion ordering

    Full text link
    We study the spin-density-wave instabilities in the quasi-one-dimensional conductor (TMTSF)_2ClO_4. The orientational order of the anions ClO_4 doubles the unit cell and leads to the presence of two electrnic bands at the Fermi level. From the Ginzburg-Landau expansion of the free energy, we determine the low-temperature phase diagram as a function of the strength of the Coulomb potential due to the anions. Upon increasing the anion potential, we first find a SDW phase corresponding to an interband pairing. This SDW phase is rapidly supressed, the metallic phase being then stable down to zero temperature. The SDW instability is restored when the anion potential becomes of the order of the hopping amplitude. The metal-SDW transition corresponds to an intraband pairing which leaves half of the Fermi surface metallic. At lower temperature, a second transition, corresponding to the other intraband pairing, takes place and opens a gap on the whole Fermi surface. We discuss the consequences of our results for the experimental phase diagram of (TMTSF)_2ClO_4 at high magnetic field.Comment: 13 pages, 10 figures, Version 2 with minor correction

    EPS09 - a New Generation of NLO and LO Nuclear Parton Distribution Functions

    Full text link
    We present a next-to-leading order (NLO) global DGLAP analysis of nuclear parton distribution functions (nPDFs) and their uncertainties. Carrying out an NLO nPDF analysis for the first time with three different types of experimental input -- deep inelastic \ell+A scattering, Drell-Yan dilepton production in p+AA collisions, and inclusive pion production in d+Au and p+p collisions at RHIC -- we find that these data can well be described in a conventional collinear factorization framework. Although the pion production has not been traditionally included in the global analyses, we find that the shape of the nuclear modification factor RdAuR_{\rm dAu} of the pion pTp_T-spectrum at midrapidity retains sensitivity to the gluon distributions, providing evidence for shadowing and EMC-effect in the nuclear gluons. We use the Hessian method to quantify the nPDF uncertainties which originate from the uncertainties in the data. In this method the sensitivity of χ2\chi^2 to the variations of the fitting parameters is mapped out to orthogonal error sets which provide a user-friendly way to calculate how the nPDF uncertainties propagate to any factorizable nuclear cross-section. The obtained NLO and LO nPDFs and the corresponding error sets are collected in our new release called {\ttfamily EPS09}. These results should find applications in precision analyses of the signatures and properties of QCD matter at the LHC and RHIC.Comment: 34 pages, 16 figures. The version accepted for publicatio

    Pharmacokinetic and exposure-response analysis of pertuzumab in patients with HER2-positive metastatic gastric or gastroesophageal junction cancer

    Get PDF
    Purpose: To characterize the pharmacokinetics (PK) of pertuzumab and trastuzumab in patients with HER2-positive metastatic gastric or gastroesophageal junction cancer in the randomized, double-blind, phase III JACOB study (NCT01774786), and to evaluate the appropriateness of the pertuzumab regimen in these patients. Methods: Patients received 840 mg intravenous pertuzumab or placebo plus trastuzumab q3w and chemotherapy. Pertuzumab and trastuzumab were administered until disease progression or unacceptable toxicity. Chemotherapy was administered for up to six cycles or disease progression or unacceptable toxicity. Serum concentrations of pertuzumab and trastuzumab were measured. Pertuzumab PK was characterized across treatment cycles. The impact of anti-drug antibodies (ADAs) on pertuzumab PK and the impact of pertuzumab on trastuzumab PK were assessed. An exploratory exposure-efficacy analysis was also conducted. Results: In total, 374 patients in the pertuzumab arm had evaluable PK data. The mean observed pertuzumab steady-state serum trough (minimum) concentration (C) ± standard deviation was 114 ± 51.8 μg/mL. The target pertuzumab C of ≥ 20 μg/mL was reached in 99.3% of patients at Cycle 5 (steady state) and beyond. Greater than 90% of patients were above the PK target right after the first pertuzumab dose. There was no apparent impact of ADAs on pertuzumab PK nor of pertuzumab on trastuzumab PK. There were no differences in overall survival across Cycle 1 pertuzumab (C) or Cycle 5 pertuzumab (C) exposure quartiles. Conclusions: Pertuzumab exposure in JACOB was consistent with prior studies in advanced gastric cancer and breast cancer. The 840 mg q3w dose allowed the majority of patients in JACOB to achieve target pertuzumab concentrations and appears to be an appropriate dose selectio

    Magnetothemopower study of quasi two-dimensional organic conductor α\alpha-(BEDT-TTF)2_2KHg(SCN)4_4

    Full text link
    We have used a low-frequency magneto-thermopower (MTEP) method to probe the high magnetic field ground state behavior of α\alpha-(BEDT-TTF)2_2KHg(SCN)4_4 along all three principal crystallographic axes at low temperatures. The thermopower tensor coefficients (Sxx,SyxS_{xx}, S_{yx} and SzzS_{zz}) have been measured to 30 T, beyond the anomalous low temperature, field-induced transition at 22.5 T. We find a significant anisotropy in the MTEP signal, and also observe large quantum oscillations associated with the de Haas - van Alphen effect. The anisotropy indicates that the ground state properties are clearly driven by mechanisms that occur along specific directions for the in-plane electronic structure. Both transverse and longitudinal magnetothermopower show asymptotic behavior in field, which can be explained in terms of magnetic breakdown of compensated closed orbits.Comment: 9 pages, 10 figure

    From bi-layer to tri-layer Fe nanoislands on Cu3Au(001)

    Full text link
    Self assembly on suitably chosen substrates is a well exploited root to control the structure and morphology, hence magnetization, of metal films. In particular, the Cu3Au(001) surface has been recently singled out as a good template to grow high spin Fe phases, due to the close matching between the Cu3Au lattice constant (3.75 Angstrom) and the equilibrium lattice constant for fcc ferromagnetic Fe (3.65 Angstrom). Growth proceeds almost layer by layer at room temperature, with a small amount of Au segregation in the early stage of deposition. Islands of 1-2 nm lateral size and double layer height are formed when 1 monolayer of Fe is deposited on Cu3Au(001) at low temperature. We used the PhotoElectron Diffraction technique to investigate the atomic structure and chemical composition of these nanoislands just after the deposition at 140 K and after annealing at 400 K. We show that only bi-layer islands are formed at low temperature, without any surface segregation. After annealing, the Fe atoms are re-aggregated to form mainly tri-layer islands. Surface segregation is shown to be inhibited also after the annealing process. The implications for the film magnetic properties and the growth model are discussed.Comment: Revtex, 5 pages with 4 eps figure

    Current constraints on Cosmological Parameters from Microwave Background Anisotropies

    Get PDF
    We compare the latest observations of Cosmic Microwave Background (CMB) Anisotropies with the theoretical predictions of the standard scenario of structure formation. Assuming a primordial power spectrum of adiabatic perturbations we found that the total energy density is constrained to be Ωtot=1.03±0.06\Omega_{tot}=1.03\pm0.06 while the energy density in baryon and Cold Dark Matter (CDM) are Ωbh2=0.021±0.003\Omega_bh^2=0.021\pm0.003 and Ωcdmh2=0.12±0.02\Omega_{cdm}h^2=0.12\pm0.02, (all at 68% C.L.) respectively. The primordial spectrum is consistent with scale invariance, (ns=0.97±0.04n_s=0.97\pm0.04) and the age of the universe is t0=14.6±0.9t_0=14.6\pm0.9 Gyrs. Adding informations from Large Scale Structure and Supernovae, we found a strong evidence for a cosmological constant ΩΛ=0.700.05+0.07\Omega_{\Lambda}=0.70_{-0.05}^{+0.07} and a value of the Hubble parameter h=0.69±0.07h=0.69\pm0.07. Restricting this combined analysis to flat universes, we put constraints on possible 'extensions' of the standard scenario. A gravity waves contribution to the quadrupole anisotropy is limited to be r0.42r \le 0.42 (95% c.l.). A constant equation of state for the dark energy component is bound to be wQ0.74w_Q \le -0.74 (95% c.l.). We constrain the effective relativistic degrees of freedom Nν6.2N_\nu \leq 6.2 and the neutrino chemical potential 0.01ξe0.18-0.01 \leq \xi_e \leq 0.18 and ξμ,τ2.3|\xi_{\mu,\tau}|\leq 2.3 (massless neutrinos).Comment: The status of cosmological parameters before WMAP. In press on Phys. Rev. D., Rapid Communication, 6 pages, 5 figure

    Transverse Momentum Dependent Parton Distribution/Fragmentation Functions at an Electron-Ion Collider

    Get PDF
    We present a summary of a recent workshop held at Duke University on Partonic Transverse Momentum in Hadrons: Quark Spin-Orbit Correlations and Quark-Gluon Interactions. The transverse momentum dependent parton distribution functions (TMDs), parton-to-hadron fragmentation functions, and multi-parton correlation functions, were discussed extensively at the Duke workshop. In this paper, we summarize first the theoretical issues concerning the study of partonic structure of hadrons at a future electron-ion collider (EIC) with emphasis on the TMDs. We then present simulation results on experimental studies of TMDs through measurements of single spin asymmetries (SSA) from semi-inclusive deep-inelastic scattering (SIDIS) processes with an EIC, and discuss the requirement of the detector for SIDIS measurements. The dynamics of parton correlations in the nucleon is further explored via a study of SSA in D (`D) production at large transverse momenta with the aim of accessing the unexplored tri-gluon correlation functions. The workshop participants identified the SSA measurements in SIDIS as a golden program to study TMDs in both the sea and valence quark regions and to study the role of gluons, with the Sivers asymmetry measurements as examples. Such measurements will lead to major advancement in our understanding of TMDs in the valence quark region, and more importantly also allow for the investigation of TMDs in the sea quark region along with a study of their evolution.Comment: 44 pages 23 figures, summary of Duke EIC workshop on TMDs accepted by EPJ

    Simulation techniques for cosmological simulations

    Get PDF
    Modern cosmological observations allow us to study in great detail the evolution and history of the large scale structure hierarchy. The fundamental problem of accurate constraints on the cosmological parameters, within a given cosmological model, requires precise modelling of the observed structure. In this paper we briefly review the current most effective techniques of large scale structure simulations, emphasising both their advantages and shortcomings. Starting with basics of the direct N-body simulations appropriate to modelling cold dark matter evolution, we then discuss the direct-sum technique GRAPE, particle-mesh (PM) and hybrid methods, combining the PM and the tree algorithms. Simulations of baryonic matter in the Universe often use hydrodynamic codes based on both particle methods that discretise mass, and grid-based methods. We briefly describe Eulerian grid methods, and also some variants of Lagrangian smoothed particle hydrodynamics (SPH) methods.Comment: 42 pages, 16 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 12; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke

    Search for Λc+pK+π\Lambda_c^+ \to p K^+ \pi^- and Ds+K+K+πD_s^+ \to K^+ K^+ \pi^- Using Genetic Programming Event Selection

    Full text link
    We apply a genetic programming technique to search for the double Cabibbo suppressed decays Λc+pK+π\Lambda_c^+ \to p K^+ \pi^- and Ds+K+K+πD_s^+ \to K^+ K^+ \pi^-. We normalize these decays to their Cabibbo favored partners and find BR(\text{BR}(\Lambda_c^+ \to p K^+ \pi^-)/BR()/\text{BR}(\Lambda_c^+ \to p K^- \pi^+)=(0.05±0.26±0.02)) = (0.05 \pm 0.26 \pm 0.02)% and BR(\text{BR}(D_s^+ \to K^+ K^+ \pi^-)/BR()/\text{BR}(D_s^+ \to K^+ K^- \pi^+)=(0.52±0.17±0.11)) = (0.52\pm 0.17\pm 0.11)% where the first errors are statistical and the second are systematic. Expressed as 90% confidence levels (CL), we find <0.46< 0.46 % and <0.78 < 0.78% respectively. This is the first successful use of genetic programming in a high energy physics data analysis.Comment: 10 page
    corecore