148 research outputs found

    Mechanisms Of Soil Carbon Stabilization In Black Spruce Forests Of Interior Alaska: Soil Temperature, Soil Water, And Wildfire

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2006The likely direction of change in soil organic carbon (SOC) in the boreal forest biome, which harbors roughly 22% of the global soil carbon pool, is of marked concern because climate warming is projected to be greatest in high latitudes and temperature is the cardinal determinant of soil C mineralization. Moreover, the majority of boreal forest SOC is harbored in surficial organic horizons which are the most susceptible to consumption in wildfire. This research focuses on mechanisms of soil C accumulation in recently burned (2004) and unburned (~1850-1950) black spruce (Picea mariana [Mill.] BSP) forests along gradients in stand productivity and soil temperature. The primary research questions in these three chapters address: (1) how the interaction between stand production and temperature effect the stabilization of C throughout the soil profile, (2) the quantity and composition of water soluble organic carbon (WSOC) as it is leached from the soil across gradients in productivity and climate, and (3) physiographic controls on organic matter consumption in wildfire and the legacy of wildfire in stable C formation (pyrogenic C, or black carbon). Soil WSOC concentrations increased while SOC stocks decreased with increasing soil temperature and stand production along the gradients studied. Stocks of BC were minuscule in comparison to organic horizon SOC stocks, and therefore the C stabilizing effect of wildfire was small in comparison to SOC accumulation through arrested decomposition. We conclude that C stocks are likely to be more vulnerable to burning as soil C stocks decline relative to C sequestered in aboveground woody tissues in a warmer climate. These findings contribute to refining estimates of potential changes in boreal soil C stocks in the context of a changing climate

    Insights on dissolved organic matter production revealed by removal of charge-transfer interactions in senescent leaf leachates

    Get PDF
    Dissolved organic matter (DOM) is a critical part of the global carbon cycle. Currently, it is understood that at least a portion of the chromophoric DOM (CDOM) character can be described through an electronic interaction of charge transfer (CT) complexes. While much work has been done to understand the influence of CT on soil and aquatic reference standard DOM, little is known about the influence of CT in fresh terrestrially derived DOM. In this study, leaf litter leachates from three tree species were treated (reduced) with sodium borohydride to determine the contribution of CT on a source of fresh terrestrial DOM. Leaf litter was sampled four times through decomposition under natural (field) conditions to determine the influence of degradation on response to borohydride treatment. Leaf litter CDOM displayed a unique loss of UVB absorption following borohydride treatment, as well as a homogenizing effect on fluorescence emission character. Humification index (HIX) differentiated Elliot Soil Humic Acid and Suwannee River Fulvic Acid from leaf litter leachates. However, biological index (BIX), and spectral slope metrics were not able to differentiate leaf leachates from these reference standards. Apparent quantum yields were similar in magnitude between leaf leachates and reference standards, although leaf leachate spectra displayed features not evident in reference standards. These results help understand the origins of DOM optical properties and associated quantitative indices in freshly sourced terrestrial material. Overall, these results suggest that even at the initial stages of decomposition, terrestrial CDOM exhibits optical characteristics and responses to removal of electron accepting ketones and aldehydes, through borohydride treatment, similar to more processed CDOM

    Persistent net release of carbon dioxide and methane from an Alaskan lowland boreal peatland complex

    Get PDF
    Permafrost degradation in peatlands is altering vegetation and soil properties and impacting net carbon storage. We studied four adjacent sites in Alaska with varied permafrost regimes, including a black spruce forest on a peat plateau with permafrost, two collapse scar bogs of different ages formed following thermokarst, and a rich fen without permafrost. Measurements included year-round eddy covariance estimates of net carbon dioxide (CO2), mid-April to October methane (CH4) emissions, and environmental variables. From 2011 to 2022, annual rainfall was above the historical average, snow water equivalent increased, and snow-season duration shortened due to later snow return. Seasonally thawed active layer depths also increased. During this period, all ecosystems acted as slight annual sources of CO2 (13–59 g C m−2 year−1) and stronger sources of CH4 (11–14 g CH4 m−2 from ~April to October). The interannual variability of net ecosystem exchange was high, approximately ±100 g C m−2 year−1, or twice what has been previously reported across other boreal sites. Net CO2 release was positively related to increased summer rainfall and winter snow water equivalent and later snow return. Controls over CH4 emissions were related to increased soil moisture and inundation status. The dominant emitter of carbon was the rich fen, which, in addition to being a source of CO2, was also the largest CH4 emitter. These results suggest that the future carbon-source strength of boreal lowlands in Interior Alaska may be determined by the area occupied by minerotrophic fens, which are expected to become more abundant as permafrost thaw increases hydrologic connectivity. Since our measurements occur within close proximity of each other (≤1 km2), this study also has implications for the spatial scale and data used in benchmarking carbon cycle models and emphasizes the necessity of long-term measurements to identify carbon cycle process changes in a warming climate

    Lowering water table reduces carbon sink strength and carbon stocks in northern peatlands

    Get PDF
    Peatlands at high latitudes have accumulated \u3e400 Pg carbon (C) because saturated soil and cold temperatures suppress C decomposition. This substantial amount of C in Arctic and Boreal peatlands is potentially subject to increased decomposition if the water table (WT) decreases due to climate change, including permafrost thaw-related drying. Here, we optimize a version of the Organizing Carbon and Hydrology In Dynamic Ecosystems model (ORCHIDEE-PCH4) using site-specific observations to investigate changes in CO and CH fluxes as well as C stock responses to an experimentally manipulated decrease of WT at six northern peatlands. The unmanipulated control peatlands, with the WT (seasonal max up to 45 cm) below the surface, currently act as C sinks in most years (58 ± 34 g C m year ; including 6 ± 7 g C-CH m year emission). We found, however, that lowering the WT by 10 cm reduced the CO sink by 13 ± 15 g C m year and decreased CH emission by 4 ± 4 g CH m year , thus accumulating less C over 100 years (0.2 ± 0.2 kg C m ). Yet, the reduced emission of CH , which has a larger greenhouse warming potential, resulted in a net decrease in greenhouse gas balance by 310 ± 360 g CO m year . Peatlands with the initial WT close to the soil surface were more vulnerable to C loss: Non-permafrost peatlands lost \u3e2 kg C m over 100 years when WT is lowered by 50 cm, while permafrost peatlands temporally switched from C sinks to sources. These results highlight that reductions in C storage capacity in response to drying of northern peatlands are offset in part by reduced CH emissions, thus slightly reducing the positive carbon climate feedbacks of peatlands under a warmer and drier future climate scenario

    Three temperate Neptunes orbiting nearby stars

    Get PDF
    We present the discovery of three modestly irradiated, roughly Neptune-mass planets orbiting three nearby Solartype stars. HD 42618 b has a minimum mass of 15.4±2.4 M⊕, a semimajor axis of 0.55 au, an equilibrium temperature of 337 K, and is the first planet discovered to orbit the solar analogue host star, HD 42618. We also discover new planets orbiting the known exoplanet host stars HD 164922 and HD 143761 (p CrB). The new planet orbiting HD 164922 has a minimum mass of 12.9±1.6 M⊕ and orbits interior to the previously known Jovian mass planet orbiting at 2.1 au. HD 164922 c has a semimajor axis of 0.34 au and an equilibrium temperature of 418 K. HD 143761 c orbits with a semimajor axis of 0.44 au, has a minimum mass of 25±2 M⊕, and is the warmest of the three new planets with an equilibrium temperature of 445 K. It orbits exterior to the previously known warm Jupiter in the system. A transit search using space-based CoRoT data and ground-based photometry from the Automated Photometric Telescopes (APTs) at Fairborn Observatory failed to detect any transits, but the precise, high-cadence APT photometry helped to disentangle planetary-reflex motion from stellar activity. These planets were discovered as part of an ongoing radial velocity survey of bright, nearby, chromospherically inactive stars using the Automated Planet Finder (APF) telescope at Lick Observatory. The high-cadence APF data combined with nearly two decades of radial velocity data from Keck Observatory and gives unprecedented sensitivity to both short-period low-mass, and long-period intermediate-mass planets

    Burned area and carbon emissions across northwestern boreal North America from 2001-2019

    Get PDF
    Fire is the dominant disturbance agent in Alaskan and Canadian boreal ecosystems and releases large amounts of carbon into the atmosphere. Burned area and carbon emissions have been increasing with climate change, which have the potential to alter the carbon balance and shift the region from a historic sink to a source. It is therefore critically important to track the spatiotemporal changes in burned area and fire carbon emissions over time. Here we developed a new burned-area detection algorithm between 2001-2019 across Alaska and Canada at 500 m (meters) resolution that utilizes finer-scale 30 m Landsat imagery to account for land cover unsuitable for burning. This method strictly balances omission and commission errors at 500 m to derive accurate landscape- and regional-scale burned-area estimates. Using this new burned-area product, we developed statistical models to predict burn depth and carbon combustion for the same period within the NASA Arctic-Boreal Vulnerability Experiment (ABoVE) core and extended domain. Statistical models were constrained using a database of field observations across the domain and were related to a variety of response variables including remotely sensed indicators of fire severity, fire weather indices, local climate, soils, and topographic indicators. The burn depth and aboveground combustion models performed best, with poorer performance for belowground combustion. We estimate 2.37×106 ha (2.37 Mha) burned annually between 2001-2019 over the ABoVE domain (2.87 Mha across all of Alaska and Canada), emitting 79.3 ± 27.96 Tg (±1 standard deviation) of carbon (C) per year, with a mean combustion rate of 3.13 ± 1.17 kg C m-2. Mean combustion and burn depth displayed a general gradient of higher severity in the northwestern portion of the domain to lower severity in the south and east. We also found larger-fire years and later-season burning were generally associated with greater mean combustion. Our estimates are generally consistent with previous efforts to quantify burned area, fire carbon emissions, and their drivers in regions within boreal North America; however, we generally estimate higher burned area and carbon emissions due to our use of Landsat imagery, greater availability of field observations, and improvements in modeling. The burned area and combustion datasets described here (the ABoVE Fire Emissions Database, or ABoVE-FED) can be used for local- to continental-scale applications of boreal fire science

    Variation in carbon and nitrogen concentrations among peatland categories at the global scale

    Get PDF
    Publisher Copyright: © 2022 This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.Peatlands account for 15 to 30% of the world's soil carbon (C) stock and are important controls over global nitrogen (N) cycles. However, C and N concentrations are known to vary among peatlands contributing to the uncertainty of global C inventories, but there are few global studies that relate peatland classification to peat chemistry. We analyzed 436 peat cores sampled in 24 countries across six continents and measured C, N, and organic matter (OM) content at three depths down to 70 cm. Sites were distinguished between northern (387) and tropical (49) peatlands and assigned to one of six distinct broadly recognized peatland categories that vary primarily along a pH gradient. Peat C and N concentrations, OM content, and C:N ratios differed significantly among peatland categories, but few differences in chemistry with depth were found within each category. Across all peatlands C and N concentrations in the 10-20 cm layer, were 440 ± 85.1 g kg-1 and 13.9 ± 7.4 g kg-1, with an average C:N ratio of 30.1 ± 20.8. Among peatland categories, median C concentrations were highest in bogs, poor fens and tropical swamps (446-532 g kg-1) and lowest in intermediate and extremely rich fens (375-414 g kg-1). The C:OM ratio in peat was similar across most peatland categories, except in deeper samples from ombrotrophic tropical peat swamps that were higher than other peatlands categories. Peat N concentrations and C:N ratios varied approximately two-fold among peatland categories and N concentrations tended to be higher (and C:N lower) in intermediate fens compared with other peatland types. This study reports on a unique data set and demonstrates that differences in peat C and OM concentrations among broadly classified peatland categories are predictable, which can aid future studies that use land cover assessments to refine global peatland C and N stocks.Peer reviewe

    Three Temperate Neptunes Orbiting Nearby Stars

    Get PDF
    We present the discovery of three modestly irradiated, roughly Neptune-mass planets orbiting three nearby Solar-type stars. HD 42618 b has a minimum mass of 15.4 ± 2.4 M_⊙, a semimajor axis of 0.55 au, an equilibrium temperature of 337 K, and is the first planet discovered to orbit the solar analogue host star, HD 42618. We also discover new planets orbiting the known exoplanet host stars HD 164922 and HD 143761 (ρ CrB). The new planet orbiting HD 164922 has a minimum mass of 12.9 ± 1.6 M_⊙ and orbits interior to the previously known Jovian mass planet orbiting at 2.1 au. HD 164922 c has a semimajor axis of 0.34 au and an equilibrium temperature of 418 K. HD 143761 c orbits with a semimajor axis of 0.44 au, has a minimum mass of 25 ± 2 M_⊙, and is the warmest of the three new planets with an equilibrium temperature of 445 K. It orbits exterior to the previously known warm Jupiter in the system. A transit search using space-based CoRoT data and ground-based photometry from the Automated Photometric Telescopes (APTs) at Fairborn Observatory failed to detect any transits, but the precise, high-cadence APT photometry helped to disentangle planetary-reflex motion from stellar activity. These planets were discovered as part of an ongoing radial velocity survey of bright, nearby, chromospherically inactive stars using the Automated Planet Finder (APF) telescope at Lick Observatory. The high-cadence APF data combined with nearly two decades of radial velocity data from Keck Observatory and gives unprecedented sensitivity to both short-period low-mass, and long-period intermediate-mass planets
    corecore