191 research outputs found
Evidence that conflict regarding size of haemodynamic response to interventricular delay optimization of cardiac resynchronization therapy may arise from differences in how atrioventricular delay is kept constant.
Aims: Whether adjusting interventricular (VV) delay changes haemodynamic efficacy of cardiac resynchronization therapy (CRT) is controversial, with conflicting results. This study addresses whether the convention for keeping atrioventricular (AV) delay constant during VV optimization might explain these conflicts. / Method and results: Twenty-two patients in sinus rhythm with existing CRT underwent VV optimization using non-invasive systolic blood pressure. Interventricular optimization was performed with four methods for keeping the AV delay constant: (i) atrium and left ventricle delay kept constant, (ii) atrium and right ventricle delay kept constant, (iii) time to the first-activated ventricle kept constant, and (iv) time to the second-activated ventricle kept constant. In 11 patients this was performed with AV delay of 120 ms, and in 11 at AV optimum. At AV 120 ms, time to the first ventricular lead (left or right) was the overwhelming determinant of haemodynamics (13.75 mmHg at ±80 ms, P < 0.001) with no significant effect of time to second lead (0.47 mmHg, P = 0.50), P < 0.001 for difference. At AV optimum, time to first ventricular lead again had a larger effect (5.03 mmHg, P < 0.001) than time to second (2.92 mmHg, P = 0.001), P = 0.02 for difference. / Conclusion: Time to first ventricular activation is the overwhelming determinant of circulatory function, regardless of whether this is the left or right ventricular lead. If this is kept constant, the effect of changing time to the second ventricle is small or nil, and is not beneficial. In practice, it may be advisable to leave VV delay at zero. Specifying how AV delay is kept fixed might make future VV delay research more enlightening
Remodelling of gap junctions and connexin expression in diseased myocardium
Gap junctions form the cell-to-cell pathways for propagation of the precisely orchestrated patterns of current flow that govern the regular rhythm of the healthy heart. As in most tissues and organs, multiple connexin types are expressed in the heart: connexin43 (Cx43), Cx40 and Cx45 are found in distinctive combinations and relative quantities in different, functionally-specialized subsets of cardiac myocyte. Mutations in genes that encode connexins have only rarely been identified as being a cause of human cardiac disease, but remodelling of connexin expression and gap junction organization are well documented in acquired adult heart disease, notably ischaemic heart disease and heart failure. Remodelling may take the form of alterations in (i) the distribution of gap junctions and (ii) the amount and type of connexins expressed. Heterogeneous reduction in Cx43 expression and disordering in gap junction distribution feature in human ventricular disease and correlate with electrophysiologically identified arrhythmic changes and contractile dysfunction in animal models. Disease-related alterations in Cx45 and Cx40 expression have also been reported, and some of the functional implications of these are beginning to emerge. Apart from ventricular disease, various features of gap junction organization and connexin expression have been implicated in the initiation and persistence of the most common form of atrial arrhythmia, atrial fibrillation, though the disparate findings in this area remain to be clarified. Other major tasks ahead focus on the Purkinje/working ventricular myocyte interface and its role in normal and abnormal impulse propagation, connexin-interacting proteins and their regulatory functions, and on defining the precise functional properties conferred by the distinctive connexin co-expression patterns of different myocyte types in health and disease
Automated analysis of atrial late gadolinium enhancement imaging that correlates with endocardial voltage and clinical outcomes: A 2-center study
This work was supported by the British Heart Foundation PG/10/37/28347, RG/10/11/28457, NIHR Biomedical Research Centre funding, and the ElectroCardioMaths Programme of the Imperial BHF Centre of Research Excellence
Balancing functional and health benefits of food products formulated with palm oil as oil sources
Palm oil (PO) is widely utilised in the food industry and consumed in large quantities by humans. Owing to its bioactive components, such as fatty acids, carotenoids, vitamin E, and phenolic compounds, PO has been utilised for generations. However, public concern about their adverse effects on human health is growing. A literature search was conducted to identify fractionated palm oil processing techniques, proof of their health advantages, and potential food applications. Refined palm oil (RPO) is made from crude palm oil (CPO) and can be fractionated into palm olein (POl) and palm stearin (PS). Fractional crystallisation, dry fractionation, and solvent fractionation are the three basic fractionation procedures used in the PO industry. The composition of triacylglycerols and fatty acids in refined and fractionated palm oil and other vegetable oils is compared to elucidate the triacylglycerols and fatty acids that may be important in product development. It is well proven that RPO, POl, and PS extends the oil's shelf life in the food business. These oils have a more significant saturated fat content and antioxidant compounds than some vegetable oils, such as olive and coconut oils, making them more stable. Palm olein and stearin are also superior shortening agents and frying mediums for baking goods and meals. Furthermore, when ingested modestly daily, palm oils, especially RPO and POl, provide health benefits such as cardioprotective, antidiabetic, anti-inflammatory, and antithrombotic effects. Opportunities exist for fractionated palm oil to become a fat substitute; however, nutrition aspects need to be considered in further developing the market
A systematic approach to designing reliable VV optimization methodology: Assessment of internal validity of echocardiographic, electrocardiographic and haemodynamic optimization of cardiac resynchronization therapy
AbstractBackgroundIn atrial fibrillation (AF), VV optimization of biventricular pacemakers can be examined in isolation. We used this approach to evaluate internal validity of three VV optimization methods by three criteria.Methods and resultsTwenty patients (16 men, age 75±7) in AF were optimized, at two paced heart rates, by LVOT VTI (flow), non-invasive arterial pressure, and ECG (minimizing QRS duration). Each optimization method was evaluated for: singularity (unique peak of function), reproducibility of optimum, and biological plausibility of the distribution of optima.The reproducibility (standard deviation of the difference, SDD) of the optimal VV delay was 10ms for pressure, versus 8ms (p=ns) for QRS and 34ms (p<0.01) for flow.Singularity of optimum was 85% for pressure, 63% for ECG and 45% for flow (Chi2=10.9, p<0.005).The distribution of pressure optima was biologically plausible, with 80% LV pre-excited (p=0.007). The distributions of ECG (55% LV pre-excitation) and flow (45% LV pre-excitation) optima were no different to random (p=ns).The pressure-derived optimal VV delay is unaffected by the paced rate: SDD between slow and fast heart rate is 9ms, no different from the reproducibility SDD at both heart rates.ConclusionsUsing non-invasive arterial pressure, VV delay optimization by parabolic fitting is achievable with good precision, satisfying all 3 criteria of internal validity. VV optimum is unaffected by heart rate. Neither QRS minimization nor LVOT VTI satisfy all validity criteria, and therefore seem weaker candidate modalities for VV optimization. AF, unlinking interventricular from atrioventricular delay, uniquely exposes resynchronization concepts to experimental scrutiny
- …