74 research outputs found

    Closure times of neurocranial sutures and synchondroses in Persian compared to Domestic Shorthair cats

    Get PDF
    Human-directed selective breeding has modified the phenotype of the modern Persian cat towards an extreme brachycephalic phenotype (‘peke-face’ Persian), which originates from a spontaneous mutation that first appeared in the 1950s in traditional Persian types. It was suggested that the peke-face phenotype results from pathologic skull development and might represent a craniosynostosis of the coronal sutures. We followed this hypothesis and investigated the time dependent status of the neurocranial sutures and synchondroses in an ontogenetic series of doll-faced and peke-faced Persian cats compared to Domestic Shorthair cats (DSHs). Cranial suture closure was assessed by examining an ontogenetic series of formalin-fixed head specimens (n = 55) and dry skulls (n = 32) using micro-computed tomography. Sagittal, metopic, coronal and lambdoid sutures as well as intersphenoidal, spheno-occipital and spheno-ethmoid synchondroses were examined. Logistic regression analysis was performed to test the global effect of age on suture closure within a group of peke-face Persians, doll-face Persians and DSHs and the 50% probability of having a closed suture was calculated and compared between groups. Age was a perfect predictor for the condition of the coronal sutures in peke-face Persians. Coronal sutures were found to be closed at 0–0.3 months. In doll-face and DSHs, coronal sutures were open throughout the lifetime with the exception of a few very old cats. Results of this study confirmed a coronal craniosynostosis that likely causes the extreme brachycephalic skull morphology in the peke-face Persian

    Podoplanin immunopositive lymphatic vessels at the implant interface in a rat model of osteoporotic fractures

    Get PDF
    Insertion of bone substitution materials accelerates healing of osteoporotic fractures. Biodegradable materials are preferred for application in osteoporotic patients to avoid a second surgery for implant replacement. Degraded implant fragments are often absorbed by macrophages that are removed from the fracture side via passage through veins or lymphatic vessels. We investigated if lymphatic vessels occur in osteoporotic bone defects and whether they are regulated by the use of different materials. To address this issue osteoporosis was induced in rats using the classical method of bilateral ovariectomy and additional calcium and vitamin deficient diet. In addition, wedge-shaped defects of 3, 4, or 5 mm were generated in the distal metaphyseal area of femur via osteotomy. The 4 mm defects were subsequently used for implantation studies where bone substitution materials of calcium phosphate cement, composites of collagen and silica, and iron foams with interconnecting pores were inserted. Different materials were partly additionally functionalized by strontium or bisphosphonate whose positive effects in osteoporosis treatment are well known. The lymphatic vessels were identified by immunohistochemistry using an antibody against podoplanin. Podoplanin immunopositive lymphatic vessels were detected in the granulation tissue filling the fracture gap, surrounding the implant and growing into the iron foam through its interconnected pores. Significant more lymphatic capillaries were counted at the implant interface of composite, strontium and bisphosphonate functionalized iron foam. A significant increase was also observed in the number of lymphatics situated in the pores of strontium coated iron foam. In conclusion, our results indicate the occurrence of lymphatic vessels in osteoporotic bone. Our results show that lymphatic vessels are localized at the implant interface and in the fracture gap where they might be involved in the removal of lymphocytes, macrophages, debris and the implants degradation products. Therefore the lymphatic vessels are involved in implant integration and fracture healing

    Re-evaluation of Zospeum schaufussi von Frauenfeld, 1862 and Z. suarezi Gittenberger, 1980, including the description of two new Iberian species using Computer Tomography (CT) (Eupulmonata, Ellobioidea, Carychiidae)

    Get PDF
    The present study aims to clarify the confused taxonomy of Z. schaufussi von Frauenfeld, 1862 and Zospeum suarezi Gittenberger, 1980. Revision of Iberian Zospeum micro snails is severely hindered by uncertainties regarding the identity of the oldest Iberian Zospeum species, Z. schaufussi von Frauenfeld, 1862. In this paper, we clarify its taxonomic status by designating a lectotype from the original syntype series and by describing its internal and external shell morphology. Using SEM-EDX, we attempt to identify the area of the type locality cave more precisely than "a cave in Spain". The shell described and illustrated by Gittenberger (1980) as Z. schaufussi appears not to be conspecific with the lectotype shell, and is considered a separate species, Z. gittenbergeri Jochum, Prieto & De Winter, sp. n. Zospeum suarezi was described from various caves in NW Spain. Study of the type material reveals that these shells are not homogenous in shell morphology. The holotype shell of Z. suarezi is imaged here for the first time. The paratype shell, illustrated by Gittenberger (1980) from a distant, second cave, is described as Zospeum praetermissum Jochum, Prieto & De Winter, sp. n. The shell selected here as lectotype of Z. schaufussi, was also considered a paratype of Z. suarezi by Gittenberger (1980). Since this specimen is morphologically very similar to topotypic shells of Z. suarezi, the latter species is considered a junior synonym of Z. schaufussi (syn. n.). The internal shell morphology of all these taxa is described and illustrated using X-ray Micro Computer Tomography (Micro-CT).Special gratitude goes to Anita Eschner (NHMW) for helping AJ access the von Frauenfeld collection and for providing valuable insights and primary literature. We are grateful to Markus Heneka and Andreas Heneka (RJL Micro & Analytic GmbH, Karlsdorf-Neuthard) for their help and technical prowess with the CT and SEM-EDX scans. We thank Katharina Jaksch-Mason (NHMW) for LM imaging the Z. schaufussi syntype material. We also gratefully acknowledge Emmanuel Tardy's (MHNG) image contributions and notes of the Gittenberger (1980) material formerly housed in the MHNG collection. Appreciation also goes to Gerald Favre for sharing his excellent forty-year-old speleological field notes with us. We acknowledge Thomas Neubauer and Michael Duda for their kind help in transporting the lectotype back and forth from Vienna. We thank the editor, Thierry Backeljau, the ZooKeys editorial team and our reviewers, Benjamin Gomez, Edmund Gittenberger and Barna Pall-Gergely for their helpful suggestions towards improving the manuscript. Lastly, we are indebted to SYNTHESYS for providing generous support in the form of three grants to AJ from the SYNTHESYS Project http://www.synthesys.info/, which is financed by the European Community Research Infrastructure Action under the FP7 "Capacities" Program

    Galleria mellonella as an alternative in vivo model to study bacterial biofilms on stainless steel and titanium implants

    Get PDF
    The purpose of this study was to establish an infection model of Galleria mellonella larvae as an alternative in vivo model for biofilm-associated infections on stainless steel and titanium implants. First, the model was established with bacteria-free implants to evaluate the biocompatibility of implants in the larvae. Titanium or stainless steel implants were implanted without any adverse effects over the entire observation period of 5 days compared to controls. Then, stainless steel and titanium implants pre-incubated with Staphylococcus aureus were implanted into the larvae to mimic biofilm-associated infection. For both materials, pre-incubation of the implant with S. aureus led to significantly reduced survival of the larvae compared to bacteria-free implants. Survival rates of the larvae could not be improved in this biofilm infection situation by the addition of gentamicin, whereas gentamicin could significantly improve the survival of the larvae in case of planktonic infection of the larvae with S. aureus without an implant, confirming the typical characteristics of reduced antibiotic susceptibility of biofilm infections. Additionally, biofilm formation and various stages of biofilm maturation were confirmed by surface electron microscopy and by measuring gene expression of biofilm-related genes with the pre-incubated implant, which showed strong biofilm formation and upregulation of autolysin (atl) and sarA genes. In conclusion, G. mellonella can be used as an alternative in vivo model to study biofilm-associated infections on stainless steel and titanium implants, which may help to reduce animal infection experiments with vertebrates in the future

    Re-evaluation of Zospeum schaufussi von Frauenfeld, 1862 and Z. suarezi Gittenberger, 1980, including the description of two new Iberian species using Computer Tomography (CT) (Eupulmonata, Ellobioidea, Carychiidae)

    Get PDF
    The present study aims to clarify the confused taxonomy of Z. schaufussi von Frauenfeld, 1862 and Zospeum suarezi Gittenberger, 1980. Revision of Iberian Zospeum micro snails is severely hindered by uncertainties regarding the identity of the oldest Iberian Zospeum species, Z. schaufussi von Frauenfeld, 1862. In this paper, we clarify its taxonomic status by designating a lectotype from the original syntype series and by describing its internal and external shell morphology. Using SEM-EDX, we attempt to identify the area of the type locality cave more precisely than “a cave in Spain”. The shell described and illustrated by Gittenberger (1980) as Z. schaufussi appears not to be conspecific with the lectotype shell, and is considered a separate species, Z. gittenbergeri Jochum, Prieto & De Winter, sp. n. Zospeum suarezi was described from various caves in NW Spain. Study of the type material reveals that these shells are not homogenous in shell morphology. The holotype shell of Z. suarezi is imaged here for the first time. The paratype shell, illustrated by Gittenberger (1980) from a distant, second cave, is described as Zospeum praetermissum Jochum, Prieto & De Winter, sp. n. The shell selected here as lectotype of Z. schaufussi, was also considered a paratype of Z. suarezi by Gittenberger (1980). Since this specimen is morphologically very similar to topotypic shells of Z. suarezi, the latter species is considered a junior synonym of Z. schaufussi (syn. n.). The internal shell morphology of all these taxa is described and illustrated using X-ray Micro Computer Tomography (Micro-CT)

    Groping through the black box of variability: An integrative taxonomic and nomenclatural re-evaluation of Zospeum isselianum Pollonera, 1887 and allied species using new imaging technology (Nano-CT, SEM), conchological, histological and molecular data (Ellobioidea, Carychiidae).

    Get PDF
    The minute troglobitic species, Zospeum isselianum Pollonera, 1887 (Eupulmonata: Ellobioidea, Carychiidae) is widely distributed within its Southern Alpine-Dinaric range. Its broad distribution and highly variable shell has caused this species to be historically lumped into its current taxonomic state of ambiguity. In an integrative taxonomic approach, phenotypic and genotypic data are synthesized to assess the intraspecific variability recently inferred for this taxon. We collected 16 Zospeum specimens in the Slovenian Alpine Arc encompassing the type locality for Z. isselianum. The material comprises five morphologically recognized (sub)species. The species are re-evaluated using SEM, X-ray nanotomography (nano-CT), conchological, histological and molecular data. Four well-defined lineages are present, which can be attributed to i) Z. isselianum s.str. from its new type locality (Turjeva jama), ii) a highly morphologically variable lineage that so far cannot be attributed to a single morphospecies, iii) Z. kupitzense A. Stummer, 1984 (raised to species rank) and iv) a lineage comprising the two subspecies Z. alpestre alpestre (Freyer, 1855) and Z. alpestre bolei Slapnik, 1991 plus Z. isselianum individuals. The latter is treated as a single taxon Z. alpestre. After considering the severely degraded syntype material of Zospeum isselianum, we provide a taxonomic re-description and propose aneotype for this species. Furthermore, new diagnostic information is revealed regarding the columella of Zospeum isselianum and allied species. Detailed anatomical study reveals new structural aspects of Zospeum morphology and provides groundwork for future investigations

    Small changes in bone structure of female a7 nicotinic acetylcholine receptor knockout mice

    Get PDF
    BACKGROUND: Recently, analysis of bone from knockout mice identified muscarinic acetylcholine receptor subtype M3 (mAChR M3) and nicotinic acetylcholine receptor (nAChR) subunit a2 as positive regulator of bone mass accrual whereas of male mice deficient for a7-nAChR (a7KO) did not reveal impact in regulation of bone remodeling. Since female sex hormones are involved in fair coordination of osteoblast bone formation and osteoclast bone degradation we assigned the current study to analyze bone strength, composition and microarchitecture of female a7KO compared to their corresponding wild-type mice (a7WT). METHODS: Vertebrae and long bones of female 16-week-old a7KO (n = 10) and a7WT (n = 8) were extracted and analyzed by means of histological, radiological, biomechanical, cell- and molecular methods as well as time of flight secondary ion mass spectrometry (ToF-SIMS) and transmission electron microscopy (TEM). RESULTS: Bone of female a7KO revealed a significant increase in bending stiffness (p<0.05) and cortical thickness (p<0.05) compared to a7WT, whereas gene expression of osteoclast marker cathepsin K was declined. ToF-SIMS analysis detected a decrease in trabecular calcium content and an increase in C4H6N+ (p<0.05) and C4H8N+ (p<0.001) collagen fragments whereas a loss of osteoid was found by means of TEM. CONCLUSIONS: Our results on female a7KO bone identified differences in bone strength and composition. In addition, we could demonstrate that a7-nAChRs are involved in regulation of bone remodelling. In contrast to mAChR M3 and nAChR subunit a2 the a7-nAChR favours reduction of bone strength thereby showing similar effects as a7ß2-nAChR in male mice. nAChR are able to form heteropentameric receptors containing a- and ß-subunits as well as the subunits a7 can be arranged as homopentameric cation channel. The different effects of homopentameric and heteropentameric a7-nAChR on bone need to be analysed in future studies as well as gender effects of cholinergic receptors on bone homeostasis

    High-throughput screening of caterpillars as a platform to study host-microbe interactions and enteric immunity.

    Get PDF
    Mammalian models of human disease are expensive and subject to ethical restrictions. Here, we present an independent platform for high-throughput screening, using larvae of the tobacco hornworm Manduca sexta, combining diagnostic imaging modalities for a comprehensive characterization of aberrant phenotypes. For validation, we use bacterial/chemical-induced gut inflammation to generate a colitis-like phenotype and identify significant alterations in morphology, tissue properties, and intermediary metabolism, which aggravate with disease progression and can be rescued by antimicrobial treatment. In independent experiments, activation of the highly conserved NADPH oxidase DUOX, a key mediator of gut inflammation, leads to similar, dose-dependent alterations, which can be attenuated by pharmacological interventions. Furthermore, the developed platform could differentiate pathogens from mutualistic gastrointestinal bacteria broadening the scope of applications also to microbiomics and host-pathogen interactions. Overall, larvae-based screening can complement mammals in preclinical studies to explore innate immunity and host-pathogen interactions, thus representing a substantial contribution to improve mammalian welfare
    • 

    corecore