10 research outputs found

    Interferons Coordinate a Multifaceted Defense

    Get PDF
    While interferons help kill virally infected cells, they can also promote systemic immune responses in distant tissues. In this issue of Cell Host & Microbe, Sun et al. (2015) demonstrate that type I interferon induces intestinal epithelial proliferation. This may help maintain a healthy gut and promote recovery from viral gastroenteritis

    Molecular benchmarks of a SARS-CoV-2 epidemic.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked DownloadA pressing concern in the SARS-CoV-2 epidemic and other viral outbreaks, is the extent to which the containment measures are halting the viral spread. A straightforward way to assess this is to tally the active cases and the recovered ones throughout the epidemic. Here, we show how epidemic control can be assessed with molecular information during a well characterized epidemic in Iceland. We demonstrate how the viral concentration decreased in those newly diagnosed as the epidemic transitioned from exponential growth phase to containment phase. The viral concentration in the cases identified in population screening decreased faster than in those symptomatic and considered at high risk and that were targeted by the healthcare system. The viral concentration persists in recovering individuals as we found that half of the cases are still positive after two weeks. We demonstrate that accumulation of mutations in SARS-CoV-2 genome can be exploited to track the rate of new viral generations throughout the different phases of the epidemic, where the accumulation of mutations decreases as the transmission rate decreases in the containment phase. Overall, the molecular signatures of SARS-CoV-2 infections contain valuable epidemiological information that can be used to assess the effectiveness of containment measures

    Vaccination of healthcare personnel in Europe: update to current policies

    No full text
    We investigated and compared current national vaccination policies for health-care personnel (HCP) in Europe with results from our previous survey. Data from 36 European countries were collected using the same methodology as in 2011. National policies for HCP immunization were in place in all countries. There were significant differences in terms of number of vaccinations, target HCP and healthcare settings, and implementation regulations (recommended or mandatory vaccinations). Vaccination policies against hepatitis B and seasonal influenza were present in 35 countries each. Policies for vaccination of HCP against measles, mumps, rubella and varicella existed in 28, 24, 25 and 19 countries, respectively; and against tetanus, diphtheria, pertussis and poliomyelitis in 21, 20, 19, and 18 countries, respectively. Recommendations for hepatitis A immunization existed in 17 countries, and against meningococcus B, meningococcus C, meningococcus A, C, W, Y, and tuberculosis in 10, 8, 17, and 7 countries, respectively. Mandatory vaccination policies were found in 13 countries and were a pre-requisite for employment in ten. Comparing the vaccination programs of the 30 European countries that participated in the 2011 survey, we found that more countries had national vaccination policies against measles, mumps, rubella, hepatitis A, diphtheria, tetanus, poliomyelitis, pertussis, meningococcus C and/or meningococcus A, C, W, Y; and more of these implemented mandatory vaccination policies for HCP. In conclusion, European countries now have more comprehensive national vaccination programs for HCP, however there are still gaps. Given the recent large outbreaks of vaccine-preventable diseases in Europe and the occupational risk for HCP, vaccination policies need to be expanded and strengthened in several European countries. Overall, vaccination policies for HCP in Europe should be periodically re-evaluated in order to provide optimal protection against vaccine-preventable diseases and infection control within healthcare facilities for HCP and patients.info:eu-repo/semantics/publishedVersio

    Spread of SARS-CoV-2 in the Icelandic Population.

    No full text
    To access publisher's full text version of this article click on the hyperlink belowContext: Radical cystectomy and pelvic lymph node dissection (RC and PLND) are an essential part of the treatment paradigm in high risk bladder cancer. However, these patients have high rates of morbidity and mortality related both to the treatment and to the disease.Objective: To provide overview of current literature about clinical markers that can be used to predict and improve BC-patient outcomes at the time of RC and PLND and to study if they are properly validated.Evidence acquisition: A systematic literature search was conducted according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) criteria between January 1990 and October 2018 to identify English written original and review articles relevant to this topic. Prospective and retrospective studies were included.Evidence synthesis: There are several risk factors identified from non-randomised trials that can be improved before surgery to reduce perioperative mortality and morbidity. These include poor nutritional status, anaemia, renal function and smoking. Preoperative nomograms have also been developed to help decision-making and to inform patients about the risks of surgery. They can be used to estimate risk of postoperative mortality after RC and PLND with accuracy varying from 70 to 86%. These nomograms are largely based on retrospective data. Likewise, nomograms developed to calculate estimates about patient's overall and cancer specific survival have the same limitations.Conclusion: Clinical markers to predict morbidity, mortality and survival in patients with bladder cancer treated with RC and PLND may help to improve patient outcomes and treatment decision-making, but available data come from small retrospective trials and have not been properly validated. Prospective, multi-centre studies are needed to implement and disseminate predictive clinical markers and nomograms such that they can be utilised in treatment decision-making in daily practice.deCODE Genetics-Amge

    Humoral Immune Response to SARS-CoV-2 in Iceland.

    No full text
    To access publisher's full text version of this article click on the hyperlink belowBackground: Little is known about the nature and durability of the humoral immune response to infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Methods: We measured antibodies in serum samples from 30,576 persons in Iceland, using six assays (including two pan-immunoglobulin [pan-Ig] assays), and we determined that the appropriate measure of seropositivity was a positive result with both pan-Ig assays. We tested 2102 samples collected from 1237 persons up to 4 months after diagnosis by a quantitative polymerase-chain-reaction (qPCR) assay. We measured antibodies in 4222 quarantined persons who had been exposed to SARS-CoV-2 and in 23,452 persons not known to have been exposed. Results: Of the 1797 persons who had recovered from SARS-CoV-2 infection, 1107 of the 1215 who were tested (91.1%) were seropositive; antiviral antibody titers assayed by two pan-Ig assays increased during 2 months after diagnosis by qPCR and remained on a plateau for the remainder of the study. Of quarantined persons, 2.3% were seropositive; of those with unknown exposure, 0.3% were positive. We estimate that 0.9% of Icelanders were infected with SARS-CoV-2 and that the infection was fatal in 0.3%. We also estimate that 56% of all SARS-CoV-2 infections in Iceland had been diagnosed with qPCR, 14% had occurred in quarantined persons who had not been tested with qPCR (or who had not received a positive result, if tested), and 30% had occurred in persons outside quarantine and not tested with qPCR. Conclusions: Our results indicate that antiviral antibodies against SARS-CoV-2 did not decline within 4 months after diagnosis. We estimate that the risk of death from infection was 0.3% and that 44% of persons infected with SARS-CoV-2 in Iceland were not diagnosed by qPCR
    corecore