12 research outputs found

    Online Learning and Bandits with Queried Hints

    Get PDF

    Online Learning and Bandits with Queried Hints

    Get PDF
    We consider the classic online learning and stochastic multi-armed bandit (MAB) problems, when at each step, the online policy can probe and find out which of a small number (kk) of choices has better reward (or loss) before making its choice. In this model, we derive algorithms whose regret bounds have exponentially better dependence on the time horizon compared to the classic regret bounds. In particular, we show that probing with k=2k=2 suffices to achieve time-independent regret bounds for online linear and convex optimization. The same number of probes improve the regret bound of stochastic MAB with independent arms from O(nT)O(\sqrt{nT}) to O(n2log⁥T)O(n^2 \log T), where nn is the number of arms and TT is the horizon length. For stochastic MAB, we also consider a stronger model where a probe reveals the reward values of the probed arms, and show that in this case, k=3k=3 probes suffice to achieve parameter-independent constant regret, O(n2)O(n^2). Such regret bounds cannot be achieved even with full feedback after the play, showcasing the power of limited ``advice'' via probing before making the play. We also present extensions to the setting where the hints can be imperfect, and to the case of stochastic MAB where the rewards of the arms can be correlated.Comment: To appear in ITCS 202

    Topical Delivery of Low-Cost Protein Drug Candidates Made in Chloroplasts for Biofilm Disruption and Uptake by Oral Epithelial Cells

    Get PDF
    Protein drugs (PD) are minimally utilized in dental medicine due to high cost and invasive surgical delivery. There is limited clinical advancement in disrupting virulent oral biofilms, despite their high prevalence in causing dental caries. Poor efficacy of antimicrobials following topical treatments or to penetrate and disrupt formed biofilms is a major challenge. We report an exciting low-cost approach using plant-made antimicrobial peptides (PMAMPs) retrocyclin or protegrin with complex secondary structures (cyclic/hairpin) for topical use to control biofilms. The PMAMPs rapidly killed the pathogen Streptococcus mutans and impaired biofilm formation following a single topical application of tooth-mimetic surface. Furthermore, we developed a synergistic approach using PMAMPs combined with matrix-degrading enzymes to facilitate their access into biofilms and kill the embedded bacteria. In addition, we identified a novel role for PMAMPs in delivering drugs to periodontal and gingival cells, 13–48 folds more efficiently than any other tested cell penetrating peptides. Therefore, PDs fused with protegrin expressed in plant cells could potentially play a dual role in delivering therapeutic proteins to gum tissues while killing pathogenic bacteria when delivered as topical oral formulations or in chewing gums. Recent FDA approval of plant-produced PDs augurs well for clinical advancement of this novel concept

    Expression and Assembly of Largest Foreign Protein in Chloroplasts: Oral Delivery of Human FVIII Made in Lettuce Chloroplasts Robustly Suppresses Inhibitor Formation in Haemophilia A Mice

    Get PDF
    Inhibitor formation is a serious complication of factor VIII (FVIII) replacement therapy for the X‐linked bleeding disorder haemophilia A and occurs in 20%–30% of patients. No prophylactic tolerance protocol currently exists. Although we reported oral tolerance induction using FVIII domains expressed in tobacco chloroplasts, significant challenges in clinical advancement include expression of the full‐length CTB‐FVIII sequence to cover the entire patient population, regardless of individual CD4+ T‐cell epitope responses. Codon optimization of FVIII heavy chain (HC) and light chain (LC) increased expression 15‐ to 42‐fold higher than the native human genes. Homoplasmic lettuce lines expressed CTB fusion proteins of FVIII‐HC (99.3 kDa), LC (91.8 kDa), C2 (31 kDa) or single chain (SC, 178.2 kDa) up to 3622, 263, 3321 and 852 ÎŒg/g in lyophilized plant cells, when grown in a cGMP hydroponic facility (Fraunhofer). CTB‐FVIII‐SC is the largest foreign protein expressed in chloroplasts; despite a large pentamer size (891 kDa), assembly, folding and disulphide bonds were maintained upon lyophilization and long‐term storage as revealed by GM1‐ganglioside receptor binding assays. Repeated oral gavages (twice/week for 2 months) of CTB‐FVIII‐HC/CTB‐FVIII‐LC reduced inhibitor titres ~10‐fold (average 44 BU/mL to 4.7 BU/mL) in haemophilia A mice. Most importantly, increase in the frequency of circulating LAP‐expressing CD4+ CD25+FoxP3+ Treg in tolerized mice could be used as an important cellular biomarker in human clinical trials for plant‐based oral tolerance induction. In conclusion, this study reports the first clinical candidate for oral tolerance induction that is urgently needed to protect haemophilia A patients receiving FVIII injections

    Low Cost Delivery of Proteins Bioencapsulated in Plant Cells to Human Non-Immune or Immune Modulatory Cells

    Get PDF
    Targeted oral delivery of GFP fused with a GM1 receptor binding protein (CTB) or human cell penetrating peptide (PTD) or dendritic cell peptide (DCpep) was investigated. Presence of GFP+ intact plant cells between villi of ileum confirm their protection in the digestive system from acids/enzymes. Efficient delivery of GFP to gut-epithelial cells by PTD or CTB and to M cells by all these fusion tags confirm uptake of GFP in the small intestine. PTD fusion delivered GFP more efficiently to most tissues or organs than other two tags. GFP was efficiently delivered to the liver by all fusion tags, likely through the gut-liver axis. In confocal imaging studies of human cell lines using purified GFP fused with different tags, GFP signal of DCpep-GFP was only detected within dendritic cells. PTD-GFP was only detected within kidney or pancreatic cells but not in immune modulatory cells (macrophages, dendritic, T, B, or mast cells). In contrast, CTB-GFP was detected in all tested cell types, confirming ubiquitous presence of GM1 receptors. Such low-cost oral delivery of protein drugs to sera, immune system or non-immune cells should dramatically lower their cost by elimination of prohibitively expensive fermentation, protein purification cold storage/transportation and increase patient compliance

    Low Cost Industrial Production of Coagulation Factor IX Bioencapsulated in Lettuce Cells for Oral Tolerance Induction in Hemophilia B

    Get PDF
    Antibodies (inhibitors) developed by hemophilia B patients against coagulation factor IX (FIX) are challenging to eliminate because of anaphylaxis or nephrotic syndrome after continued infusion. To address this urgent unmet medical need, FIX fused with a transmucosal carrier (CTB) was produced in a commercial lettuce (Simpson Elite) cultivar using species specific chloroplast vectors regulated by endogenous psbA sequences. CTB-FIX (~1mg/g) in lyophilized cells was stable with proper folding, disulfide bonds and pentamer assembly when stored ~2 years at ambient temperature. Feeding lettuce cells to hemophilia B mice delivered CTB-FIX efficiently to the gut immune system, induced LAP+ regulatory T cells and suppressed inhibitor/IgE formation and anaphylaxis against FIX. Lyophilized cells enabled 10-fold dose escalation studies and successful induction of oral tolerance was observed in all tested doses. Induction of tolerance in such a broad dose range should enable oral delivery to patients of different age groups and diverse genetic background. Using Fraunhofer cGMP hydroponic system, ~870 kg fresh or 43.5 kg dry weight can be harvested per 1000 ft2 per annum yielding 24,000–36,000 doses for 20-kg pediatric patients, enabling first commercial development of an oral drug, addressing prohibitively expensive purification, cold storage/transportation and short shelf life of current protein drugs

    Receive Antenna Selection in MIMO Systems using Convex Optimization

    No full text
    A critical factor in the deployment of multipleinput multiple-output (MIMO) systems is the cost of multiple analog transmit/receive chains. This problem can be mitigated by antenna subset selection at the transmitter/receiver. With antenna selection, a small number of analog chains are multiplexed between a much larger number of transmit/receive antenna elements. In this paper, we present a low complexity approach to receive antenna selection for capacity maximization, based on the theory of convex optimization. We show via extensive MonteCarlo simulations that the proposed algorithm provides performance very close to that of optimal selection based on exhaustive search. We also extend this approach to receive antenna selection for the JMMSE and OSIC V-BLAST architectures
    corecore