154 research outputs found

    European expert consensus on practical management of specific aspects of parathyroid disorders in adults and in pregnancy : recommendations of the ESE Educational Program of Parathyroid Disorders (PARAT 2021)

    Get PDF
    This European expert consensus statement provides recommendations for the diagnosis and management of primary hyperparathyroidism (PHPT), chronic hypoparathyroidism in adults (HypoPT), and parathyroid disorders in relation to pregnancy and lactation. Specified areas of interest and unmet needs identified by experts at the second ESE Educational Program of Parathyroid Disorders in 2019 were discussed during two virtual workshops in 2021 and subsequently developed by working groups with interest in the specified areas. PHPT is a common endocrine disease. However, its differential diagnosis of familial hypocalciuric hypercalcemia (FHH), the definition and clinical course of normocalcemic PHPT, and the optimal management of its recurrence after surgery represents areas of uncertainty requiring clarifications. HypoPT is an orphan disease characterized by low calcium concentrations due to insufficient PTH secretion, most often secondary to neck surgery. Prevention and prediction of surgical injury to the parathyroid glands are essential to limit the disease-related burden. Long-term treatment modalities including the place for PTH replacement therapy and the optimal biochemical monitoring and imaging surveillance for complications to treatment in chronic HypoPT need to be refined. The physiological changes in calcium metabolism occurring during pregnancy and lactation modify the clinical presentation and management of parathyroid disorders in these periods of life. Modern interdisciplinary approaches to PHPT and HypoPT in pregnant and lactating women and their newborn children are proposed. The recommendations on clinical management presented here will serve as background for further educational material aimed at a broader clinical audience and were developed with the focus on endocrinologists in training.Peer reviewe

    Epithelial sodium channel is a key mediator of growth hormone-induced sodium retention in acromegaly.: Antinatriuretic action of growth hormone

    Get PDF
    International audienceAcromegalic patients present with volume expansion and arterial hypertension, but the renal sites and molecular mechanisms of direct antinatriuretic action of GH remain unclear. Here, we show that acromegalic GC rats, which are chronically exposed to very high levels of GH, exhibited a decrease of furosemide-induced natriuresis and an increase of amiloride-stimulated natriuresis compared with controls. Enhanced Na(+),K(+)-ATPase activity and altered proteolytic maturation of epithelial sodium channel (ENaC) subunits in the cortical collecting ducts (CCDs) of GC rats provided additional evidence for an increased sodium reabsorption in the late distal nephron under chronic GH excess. In vitro experiments on KC3AC1 cells, a murine CCD cell model, revealed the expression of functional GH receptors and IGF-I receptors coupled to activation of Janus kinase 2/signal transducer and activator of transcription 5, ERK, and AKT signaling pathways. That GH directly controls sodium reabsorption in CCD cells is supported by: 1) stimulation of transepithelial sodium transport inhibited by GH receptor antagonist pegvisomant; 2) induction of alpha-ENaC mRNA expression; and 3) identification of signal transducer and activator of transcription 5 binding to a response element located in the alpha-ENaC promoter, indicative of the transcriptional regulation of alpha-ENaC by GH. Our findings provide the first evidence that GH, in concert with IGF-I, stimulates ENaC-mediated sodium transport in the late distal nephron, accounting for the pathogenesis of sodium retention in acromegaly

    Film boiling conjugate heat transfer during immersion quenching

    Get PDF
    Boiling conjugate heat transfer is an active field of research encountered in several industries, including metallurgy, power generation and electronics. This paper presents a computational fluid dynamics approach capable of accurately modelling the heat transfer and flow phenomena during immersion quenching: a process in which a hot solid is immersed into a liquid, leading to sudden boiling at the solid–liquid interface. The adopted methodology allows us to couple solid and fluid regions with very different physics, using partitioned coupling. The energy equation describes the solid, while the Eulerian two-fluid modelling approach governs the fluid’s behaviour. We focus on a film boiling heat transfer regime, yet also consider natural convection, nucleate and transition boiling. A detailed overview of the methodology is given, including an analytical description of the conjugate heat transfer between all three phases. The latter leads to the derivation of a fluid temperature and Biot number, considering both fluid phases. These are then employed to assess the solver’s behaviour. In comparison with previous research, additional heat transfer regimes, extra interfacial forces and separate energy equations for each fluid phase, including phase change at their interface, are employed. Finally, the validation of the computational approach is conducted against published experimental and numerical results

    Multiphase flow effects in a horizontal oil and gas separator

    Get PDF
    An Oil and Gas separator is a device used in the petroleum industry to separate a fluid mixture into its gaseous and liquid phases. A Computational Fluid Dynamics (CFD) study aiming to identify key design features for optimising the performance of the device, is presented. A multiphase turbulent model is employed to simulate the flow through the separator and identify flow patterns that can impinge or improve its performance. To verify our assumptions, we consider three different geometries. Recommendations for the design of more cost and energy effective separators, are provided. The results are also relevant to broader Oil and Gas industry applications, as well as applications involving stratified flows through channels

    Temporal Ordering in Endocytic Clathrin-Coated Vesicle Formation via AP2 Phosphorylation.

    Get PDF
    Clathrin-mediated endocytosis (CME) is key to maintaining the transmembrane protein composition of cells' limiting membranes. During mammalian CME, a reversible phosphorylation event occurs on Thr156 of the μ2 subunit of the main endocytic clathrin adaptor, AP2. We show that this phosphorylation event starts during clathrin-coated pit (CCP) initiation and increases throughout CCP lifetime. μ2Thr156 phosphorylation favors a new, cargo-bound conformation of AP2 and simultaneously creates a binding platform for the endocytic NECAP proteins but without significantly altering AP2's cargo affinity in vitro. We describe the structural bases of both. NECAP arrival at CCPs parallels that of clathrin and increases with μ2Thr156 phosphorylation. In turn, NECAP recruits drivers of late stages of CCP formation, including SNX9, via a site distinct from where NECAP binds AP2. Disruption of the different modules of this phosphorylation-based temporal regulatory system results in CCP maturation being delayed and/or stalled, hence impairing global rates of CME

    Continued Beneficial Effects of Burosumab in Adults with X-Linked Hypophosphatemia:Results from a 24-Week Treatment Continuation Period After a 24-Week Double-Blind Placebo-Controlled Period

    Get PDF
    Burosumab, a fully human monoclonal antibody to FGF23, is the only approved treatment for X-linked hypophosphatemia (XLH), a rare genetic disorder characterized by renal phosphate wasting and substantial cumulative musculoskeletal morbidity. During an initial 24-week randomized, controlled trial, 134 adults with XLH received burosumab 1 mg/kg (n = 68) or placebo (n = 66) every 4 weeks. After 24 weeks, all subjects received open-label burosumab until week 48. This report describes the efficacy and safety of burosumab during the open-label treatment period. From weeks 24-48, serum phosphorus concentrations remained normal in 83.8% of participants who received burosumab throughout and were normalized in 89.4% who received burosumab after placebo. By week 48, 63.1% of baseline fractures/pseudofractures healed fully with burosumab, compared with 35.2% with burosumab after placebo. In both groups, burosumab was associated with clinically significant and sustained improvement from baseline to week 48 in scores for patient-reported outcomes of stiffness, pain, physical function, and total distance walked in 6 min. Rates of adverse events were similar for burosumab and placebo. There were no fatal adverse events or treatment-related serious adverse events. Nephrocalcinosis scores did not change from baseline by more than one grade at either week 24 or 48. These data demonstrate that in participants with XLH, continued treatment with burosumab is well tolerated and leads to sustained correction of serum phosphorus levels, continued healing of fractures and pseudofractures, and sustained improvement in key musculoskeletal impairments
    • …
    corecore