25 research outputs found

    The Initial Conditions of Clustered Star Formation III. The Deuterium Fractionation of the Ophiuchus B2 Core

    Full text link
    We present N2D+ 3-2 (IRAM) and H2D+ 1_11 - 1_10 and N2H+ 4-3 (JCMT) maps of the small cluster-forming Ophiuchus B2 core in the nearby Ophiuchus molecular cloud. In conjunction with previously published N2H+ 1-0 observations, the N2D+ data reveal the deuterium fractionation in the high density gas across Oph B2. The average deuterium fractionation R_D = N(N2D+)/N(N2H+) ~ 0.03 over Oph B2, with several small scale R_D peaks and a maximum R_D = 0.1. The mean R_D is consistent with previous results in isolated starless and protostellar cores. The column density distributions of both H2D+ and N2D+ show no correlation with total H2 column density. We find, however, an anticorrelation in deuterium fractionation with proximity to the embedded protostars in Oph B2 to distances >= 0.04 pc. Destruction mechanisms for deuterated molecules require gas temperatures greater than those previously determined through NH3 observations of Oph B2 to proceed. We present temperatures calculated for the dense core gas through the equating of non-thermal line widths for molecules (i.e., N2D+ and H2D+) expected to trace the same core regions, but the observed complex line structures in B2 preclude finding a reasonable result in many locations. This method may, however, work well in isolated cores with less complicated velocity structures. Finally, we use R_D and the H2D+ column density across Oph B2 to set a lower limit on the ionization fraction across the core, finding a mean x_e, lim >= few x 10^{-8}. Our results show that care must be taken when using deuterated species as a probe of the physical conditions of dense gas in star-forming regions.Comment: ApJ accepte

    The Initial Conditions of Clustered Star Formation. II. N2H+ Observations of the Ophiuchus B Core

    Full text link
    We present a Nobeyama 45 m Radio Telescope map and Australia Telescope Compact Array pointed observations of N2H+ 1-0 emission towards the clustered, low mass star forming Oph B Core within the Ophiuchus molecular cloud. We compare these data with previously published results of high resolution NH3 (1,1) and (2,2) observations in Oph B. We use 3D Clumpfind to identify emission features in the single-dish N2H+ map, and find that the N2H+ `clumps' match well similar features previously identified in NH3 (1,1) emission, but are frequently offset to clumps identified at similar resolution in 850 micron continuum emission. Wide line widths in the Oph B2 sub-Core indicate non-thermal motions dominate the Core kinematics, and remain transonic at densities n ~ 3 x 10^5 cm^-3 with large scatter and no trend with N(H2). Non-thermal motions in Oph B1 and B3 are subsonic with little variation, but also show no trend with H2 column density. Over all Oph B, non-thermal N2H+ line widths are substantially narrower than those traced by NH3, making it unlikely NH3 and N2H+ trace the same material, but the v_LSR of both species agree well. We find evidence for accretion in Oph B1 from the surrounding ambient gas. The NH3/N2H+ abundance ratio is larger towards starless Oph B1 than towards protostellar Oph B2, similar to recent observational results in other star-forming regions. Small-scale structure is found in the ATCA N2H+ 1-0 emission, where emission peaks are again offset from continuum emission. In particular, the ~1 M_Sun B2-MM8 clump is associated with a N2H+ emission minimum and surrounded by a broken ring-like N2H+ emission structure, suggestive of N2H+ depletion. We find a strong general trend of decreasing N2H+ abundance with increasing N(H2) in Oph B which matches that found for NH3.Comment: 55 pages (manuscript), 15 figures, ApJ accepte

    AzTEC millimeter survey of the COSMOS field - III. Source catalog over 0.72 sq. deg. and plausible boosting by large-scale structure

    Get PDF
    We present a 0.72 sq. deg. contiguous 1.1mm survey in the central area of the COSMOS field carried out to a 1sigma ~ 1.26 mJy/beam depth with the AzTEC camera mounted on the 10m Atacama Submillimeter Telescope Experiment (ASTE). We have uncovered 189 candidate sources at a signal-to-noise ratio S/N >= 3.5, out of which 129, with S/N >= 4, can be considered to have little chance of being spurious (< 2 per cent). We present the number counts derived with this survey, which show a significant excess of sources when compared to the number counts derived from the ~0.5 sq. deg. area sampled at similar depths in the Scuba HAlf Degree Extragalactic Survey (SHADES, Austermann et al. 2010). They are, however, consistent with those derived from fields that were considered too small to characterize the overall blank-field population. We identify differences to be more significant in the S > 5 mJy regime, and demonstrate that these excesses in number counts are related to the areas where galaxies at redshifts z < 1.1 are more densely clustered. The positions of optical-IR galaxies in the redshift interval 0.6 < z < 0.75 are the ones that show the strongest correlation with the positions of the 1.1mm bright population (S > 5 mJy), a result which does not depend exclusively on the presence of rich clusters within the survey sampled area. The most likely explanation for the observed excess in number counts at 1.1mm is galaxy-galaxy and galaxy-group lensing at moderate amplification levels, that increases in amplitude as one samples larger and larger flux densities. This effect should also be detectable in other high redshift populations.Comment: 21 pages, 17 figures, accepted for publication in MNRA

    Detection of an ultra-bright submillimeter galaxy in the Subaru/XMM-Newton Deep Field using AzTEC/ASTE

    Get PDF
    We report the detection of an extremely bright (\sim37 mJy at 1100 μ\mum and \sim91 mJy at 880 μ\mum) submillimeter galaxy (SMG), AzTEC-ASTE-SXDF1100.001 (hereafter referred to as SXDF1100.001 or Orochi), discovered in 1100 μ\mum observations of the Subaru/XMM-Newton Deep Field using AzTEC on ASTE. Subsequent CARMA 1300 μ\mum and SMA 880 μ\mum observations successfully pinpoint the location of Orochi and suggest that it has two components, one extended (FWHM of \sim 4^{\prime\prime}) and one compact (unresolved). Z-Spec on CSO has also been used to obtain a wide band spectrum from 190 to 308 GHz, although no significant emission/absorption lines are found. The derived upper limit to the line-to-continuum flux ratio is 0.1--0.3 (2 σ\sigma) across the Z-Spec band. Based on the analysis of the derived spectral energy distribution from optical to radio wavelengths of possible counterparts near the SMA/CARMA peak position, we suggest that Orochi is a lensed, optically dark SMG lying at z3.4z \sim 3.4 behind a foreground, optically visible (but red) galaxy at z1.4z \sim 1.4. The deduced apparent (i.e., no correction for magnification) infrared luminosity (LIRL_{\rm IR}) and star formation rate (SFR) are 6×10136 \times 10^{13} LL_{\odot} and 11000 MM_{\odot} yr1^{-1}, respectively, assuming that the LIRL_{\rm IR} is dominated by star formation. These values suggest that Orochi will consume its gas reservoir within a short time scale (3×1073 \times 10^{7} yr), which is indeed comparable to those in extreme starbursts like the centres of local ULIRGs.Comment: 18 pages, 13 figure

    Deep 1.1 mm-wavelength imaging of the GOODS-S field by AzTEC/ASTE - I. Source catalogue and number counts

    Get PDF
    [Abridged] We present the first results from a 1.1 mm confusion-limited map of the GOODS-S field taken with AzTEC on the ASTE telescope. We imaged a 270 sq. arcmin field to a 1\sigma depth of 0.48 - 0.73 mJy/beam, making this one of the deepest blank-field surveys at mm-wavelengths ever achieved. Although our GOODS-S map is extremely confused, we demonstrate that our source identification and number counts analyses are robust, and the techniques discussed in this paper are relevant for other deeply confused surveys. We find a total of 41 dusty starburst galaxies with S/N >= 3.5 within this uniformly covered region, where only two are expected to be false detections. We derive the 1.1mm number counts from this field using both a "P(d)" analysis and a semi-Bayesian technique, and find that both methods give consistent results. Our data are well-fit by a Schechter function model with (S', N(3mJy), \alpha) = (1.30+0.19 mJy, 160+27 (mJy/deg^2)^(-1), -2.0). Given the depth of this survey, we put the first tight constraints on the 1.1 mm number counts at S(1.1mm) = 0.5 mJy, and we find evidence that the faint-end of the number counts at S(850\mu m) < 2.0 mJy from various SCUBA surveys towards lensing clusters are biased high. In contrast to the 870 \mu m survey of this field with the LABOCA camera, we find no apparent under-density of sources compared to previous surveys at 1.1 mm. Additionally, we find a significant number of SMGs not identified in the LABOCA catalogue. We find that in contrast to observations at wavelengths < 500 \mu m, MIPS 24 \mu m sources do not resolve the total energy density in the cosmic infrared background at 1.1 mm, demonstrating that a population of z > 3 dust-obscured galaxies that are unaccounted for at these shorter wavelengths potentially contribute to a large fraction (~2/3) of the infrared background at 1.1 mm.Comment: 21 pages, 9 figures. Accepted to MNRAS

    The Initial Conditions of Clustered Star Formation I: NH3 Observations of Dense Cores in Ophiuchus

    Full text link
    We present combined interferometer and single dish telescope data of NH3 (J,K) = (1,1) and (2,2) emission towards the clustered star forming Ophiuchus B, C and F Cores at high spatial resolution (~1200 AU) using the Australia Telescope Compact Array, the Very Large Array, and the Green Bank Telescope. While the large scale features of the NH3 (1,1) integrated intensity appear similar to 850 micron continuum emission maps of the Cores, on 15" (1800 AU) scales we find significant discrepancies between the dense gas tracers in Oph B, but good correspondence in Oph C and F. Using the Clumpfind structure identifying algorithm, we identify 15 NH3 clumps in Oph B, and 3 each in Oph C and F. Only five of the Oph B NH3 clumps are coincident within 30" (3600 AU) of a submillimeter clump. We find v_LSR varies little across any of the Cores, and additionally varies by only ~1.5 km/s between them. The observed NH3 line widths within the Oph B and F Cores are generally large and often mildly supersonic, while Oph C is characterized by narrow line widths which decrease to nearly thermal values. We find several regions of localized narrow line emission (\Delta v < 0.4 km/s), some of which are associated with NH3 clumps. We derive the kinetic temperatures of the gas, and find they are remarkably constant across Oph B and F, with a warmer mean value (T_K = 15 K) than typically found in isolated regions and consistent with previous results in clustered regions. Oph C, however, has a mean T_K = 12 K, decreasing to a minimum T_K = 9.4 K towards the submillimeter continuum peak, similar to previous studies of isolated starless cores. There is no significant difference in temperature towards protostars embedded in the Cores. [Abridged]Comment: ApJ, accepte
    corecore