128 research outputs found

    IL-10 from CD4+CD25−Foxp3−CD127− Adaptive Regulatory T Cells Modulates Parasite Clearance and Pathology during Malaria Infection

    Get PDF
    The outcome of malaria infection is determined, in part, by the balance of pro-inflammatory and regulatory immune responses. Failure to develop an effective pro-inflammatory response can lead to unrestricted parasite replication, whilst failure to regulate this response leads to the development of severe immunopathology. IL-10 and TGF-β are known to be important components of the regulatory response, but the cellular source of these cytokines is still unknown. Here we have examined the role of natural and adaptive regulatory T cells in the control of malaria infection and find that classical CD4+CD25hi (and Foxp3+) regulatory T cells do not significantly influence the outcome of infections with the lethal (17XL) strain of Plasmodium yoelii (PyL). In contrast, we find that adaptive IL-10-producing, CD4+ T cells (which are CD25−, Foxp3−, and CD127− and do not produce Th1, Th2, or Th17 associated cytokines) that are generated during both PyL and non-lethal P. yoelii 17X (PyNL) infections are able to down-regulate pro-inflammatory responses and impede parasite clearance. In summary, we have identified a population of induced Foxp3− regulatory (Tr1) T cells, characterised by production of IL-10 and down regulation of IL-7Rα, that modulates the inflammatory response to malaria

    IL-10 Signaling Blockade Controls Murine West Nile Virus Infection

    Get PDF
    West Nile virus (WNV), a mosquito-borne single-stranded RNA flavivirus, can cause significant human morbidity and mortality. Our data show that interleukin-10 (IL-10) is dramatically elevated both in vitro and in vivo following WNV infection. Consistent with an etiologic role of IL-10 in WNV pathogenesis, we find that WNV infection is markedly diminished in IL-10 deficient (IL-10−/−) mice, and pharmacologic blockade of IL-10 signaling by IL-10 neutralizing antibody increases survival of WNV-infected mice. Increased production of antiviral cytokines in IL-10−/− mice is associated with more efficient control of WNV infection. Moreover, CD4+ T cells produce copious amounts of IL-10, and may be an important cellular source of IL-10 during WNV infection in vivo. In conclusion, IL-10 signaling plays a negative role in immunity against WNV infection, and blockade of IL-10 signaling by genetic or pharmacologic means helps to control viral infection, suggesting a novel anti-WNV therapeutic strategy

    IL-10 Suppression of NK/DC Crosstalk Leads to Poor Priming of MCMV-Specific CD4 T Cells and Prolonged MCMV Persistence

    Get PDF
    IL-10 is an anti-inflammatory cytokine that regulates the extent of host immunity to infection by exerting suppressive effects on different cell types. Herpes viruses induce IL-10 to modulate the virus-host balance towards their own benefit, resulting in prolonged virus persistence. To define the cellular and molecular players involved in IL-10 modulation of herpes virus-specific immunity, we studied mouse cytomegalovirus (MCMV) infection. Here we demonstrate that IL-10 specifically curtails the MCMV-specific CD4 T cell response by suppressing the bidirectional crosstalk between NK cells and myeloid dendritic cells (DCs). In absence of IL-10, NK cells licensed DCs to effectively prime MCMV-specific CD4 T cells and we defined the pro-inflammatory cytokines IL-12, IFN-γ and TNF-α as well as NK cell activating receptors NKG2D and NCR-1 to regulate this bidirectional NK/DC interplay. Consequently, markedly enhanced priming of MCMV-specific CD4 T cells in Il10-/-mice led to faster control of lytic viral replication, bu

    IL-10 Blocks the Development of Resistance to Re-Infection with Schistosoma mansoni

    Get PDF
    Despite effective chemotherapy to treat schistosome infections, re-infection rates are extremely high. Resistance to reinfection can develop, however it typically takes several years following numerous rounds of treatment and re-infection, and often develops in only a small cohort of individuals. Using a well-established and highly permissive mouse model, we investigated whether immunoregulatory mechanisms influence the development of resistance. Following Praziquantel (PZQ) treatment of S. mansoni infected mice we observed a significant and mixed anti-worm response, characterized by Th1, Th2 and Th17 responses. Despite the elevated anti-worm response in PBMC's, liver, spleen and mesenteric lymph nodes, this did not confer any protection from a secondary challenge infection. Because a significant increase in IL-10-producing CD4+CD44+CD25+GITR+ lymphocytes was observed, we hypothesised that IL-10 was obstructing the development of resistance. Blockade of IL-10 combined with PZQ treatment afforded a greater than 50% reduction in parasite establishment during reinfection, compared to PZQ treatment alone, indicating that IL-10 obstructs the development of acquired resistance. Markedly enhanced Th1, Th2 and Th17 responses, worm-specific IgG1, IgG2b and IgE and circulating eosinophils characterized the protection. This study demonstrates that blocking IL-10 signalling during PZQ treatment can facilitate the development of protective immunity and provide a highly effective strategy to protect against reinfection with S. mansoni

    Perinatal asphyxia: current status and approaches towards neuroprotective strategies, with focus on sentinel proteins

    Get PDF
    Delivery is a stressful and risky event menacing the newborn. The mother-dependent respiration has to be replaced by autonomous pulmonary breathing immediately after delivery. If delayed, it may lead to deficient oxygen supply compromising survival and development of the central nervous system. Lack of oxygen availability gives rise to depletion of NAD+ tissue stores, decrease of ATP formation, weakening of the electron transport pump and anaerobic metabolism and acidosis, leading necessarily to death if oxygenation is not promptly re-established. Re-oxygenation triggers a cascade of compensatory biochemical events to restore function, which may be accompanied by improper homeostasis and oxidative stress. Consequences may be incomplete recovery, or excess reactions that worsen the biological outcome by disturbed metabolism and/or imbalance produced by over-expression of alternative metabolic pathways. Perinatal asphyxia has been associated with severe neurological and psychiatric sequelae with delayed clinical onset. No specific treatments have yet been established. In the clinical setting, after resuscitation of an infant with birth asphyxia, the emphasis is on supportive therapy. Several interventions have been proposed to attenuate secondary neuronal injuries elicited by asphyxia, including hypothermia. Although promising, the clinical efficacy of hypothermia has not been fully demonstrated. It is evident that new approaches are warranted. The purpose of this review is to discuss the concept of sentinel proteins as targets for neuroprotection. Several sentinel proteins have been described to protect the integrity of the genome (e.g. PARP-1; XRCC1; DNA ligase IIIα; DNA polymerase β, ERCC2, DNA-dependent protein kinases). They act by eliciting metabolic cascades leading to (i) activation of cell survival and neurotrophic pathways; (ii) early and delayed programmed cell death, and (iii) promotion of cell proliferation, differentiation, neuritogenesis and synaptogenesis. It is proposed that sentinel proteins can be used as markers for characterising long-term effects of perinatal asphyxia, and as targets for novel therapeutic development and innovative strategies for neonatal care

    Transplant Tolerance to Pancreatic Islets Is Initiated in the Graft and Sustained in the Spleen

    No full text
    The immune system is comprised of several CD4(+) T regulatory (Treg) cell types, of which two, the Foxp3(+) Treg and T regulatory type 1 (Tr1) cells, have frequently been associated with transplant tolerance. However, whether and how these two Treg-cell types synergize to promote allograft tolerance remains unknown. We previously developed a mouse model of allogeneic transplantation in which a specific immunomodulatory treatment leads to transplant tolerance through both Foxp3(+) Treg and Tr1 cells. Here, we show that Foxp3(+) Treg cells exert their regulatory function within the allograft and initiate engraftment locally and in a non-antigen (Ag) specific manner. Whereas CD4(+) CD25(−) T cells, which contain Tr1 cells, act from the spleen and are key to the maintenance of long-term tolerance. Importantly, the role of Foxp3(+) Treg and Tr1 cells is not redundant once they are simultaneously expanded/induced in the same host. Moreover, our data show that long-term tolerance induced by Foxp3(+) Treg-cell transfer is sustained by splenic Tr1 cells and functionally moves from the allograft to the spleen

    Transplant Tolerance to Pancreatic Islets Is Initiated in the Graft and Sustained in the Spleen

    No full text
    The immune system is comprised of several CD4(+) T regulatory (Treg) cell types, of which two, the Foxp3(+) Treg and T regulatory type 1 (Tr1) cells, have frequently been associated with transplant tolerance. However, whether and how these two Treg-cell types synergize to promote allograft tolerance remains unknown. We previously developed a mouse model of allogeneic transplantation in which a specific immunomodulatory treatment leads to transplant tolerance through both Foxp3(+) Treg and Tr1 cells. Here, we show that Foxp3(+) Treg cells exert their regulatory function within the allograft and initiate engraftment locally and in a non-antigen (Ag) specific manner. Whereas CD4(+) CD25(-) T cells, which contain Tr1 cells, act from the spleen and are key to the maintenance of long-term tolerance. Importantly, the role of Foxp3(+) Treg and Tr1 cells is not redundant once they are simultaneously expanded/induced in the same host. Moreover, our data show that long-term tolerance induced by Foxp3(+) Treg-cell transfer is sustained by splenic Tr1 cells and functionally moves from the allograft to the spleen

    Increased susceptibility to airway responses in CD40-deficient mice

    No full text
    The interaction between CD40 and its ligand (CD154) is crucial for IL-12 production and effective humoral immunity such as IgE production. Although the interaction seems to play a crucial role in asthmatic inflammation, previous studies investigating the role of the CD40 and CD154 interaction in experimental animal models of asthma are complicated due to multistep reactions in developing asthma. Here, in order to investigate the role of CD40 in the effector phase in the development of airway responses, we used CD40-deficient mice backcrossed with mice transgenic for an ovalbumin (OVA)-specific TCR (TCRtg). Using intranasal OVA administration followed by aerosol inhalation of OVA, greater airway hyperreactivity and eosinophilia in bronchoalveolar lavage fluid (BALF) were observed in CD40-deficient mice backcrossed with TCRtg mice (CD40(–/–)/ TCRtg mice), compared with control littermates (CD40(+/+)/ TCRtg mice). CD4(+) helper T cell subset analysis of lung draining lymph nodes revealed that the Th1 component was significantly decreased in CD40(–/–)/ TCRtg mice. Airway hyperreactivity and airway eosinophilia significantly correlated with the predomination of Th2 cells. Cytokine measurements in BALF also showed decreased IL-12 and the predominance of Th2 cells in CD40(–/–)/ TCRtg mice. These results suggest that CD40 may play a protective role in developing asthma in the phase after establishing specific memory T cells through the regulation of the balance between Th1 and Th2 cells presumably via induction of IL-12
    corecore