9 research outputs found

    The global burden attributable to low bone mineral density

    Get PDF
    Introduction: The Global Burden of Disease Study 2010 estimated the worldwide health burden of 291 diseases and injuries and 67 risk factors by calculating disability-adjusted life years (DALYs). Osteoporosis was not considered as a disease, and bone mineral density (BMD) was analysed as a risk factor for fractures, which formed part of the health burden due to falls. Objectives: To calculate (1) the global distribution of BMD, (2) its population attributable fraction (PAF) for fractures and subsequently for falls, and (3) the number of DALYs due to BMD. Methods: A systematic review was performed seeking population-based studies in which BMD was measured by dual-energy X-ray absorptiometry at the femoral neck in people aged 50 years and over. Age- and sex-specific mean ± SD BMD values (g/cm2) were extracted from eligible studies. Comparative risk assessment methodology was used to calculate PAFs of BMD for fractures. The theoretical minimum risk exposure distribution was estimated as the age- and sex-specific 90th centile from the Third National Health and Nutrition Examination Survey (NHANES III). Relative risks of fractures were obtained from a previous meta-analysis. Hospital data were used to calculate the fraction of the health burden of falls that was due to fractures. Results: Global deaths and DALYs attributable to low BMD increased from 103 000 and 3 125 000 in 1990 to 188 000 and 5 216 000 in 2010, respectively. The percentage of low BMD in the total global burden almost doubled from 1990 (0.12%) to 2010 (0.21%). Around one-third of falls-related deaths were attributable to low BMD. Conclusions: Low BMD is responsible for a growing global health burden, only partially representative of the real burden of osteoporosis

    The global burden attributable to low bone mineral density

    No full text
    Introduction: The Global Burden of Disease Study 2010 estimated the worldwide health burden of 291 diseases and injuries and 67 risk factors by calculating disability-adjusted life years (DALYs). Osteoporosis was not considered as a disease, and bone mineral density (BMD) was analysed as a risk factor for fractures, which formed part of the health burden due to falls. Objectives: To calculate (1) the global distribution of BMD, (2) its population attributable fraction (PAF) for fractures and subsequently for falls, and (3) the number of DALYs due to BMD. Methods: A systematic review was performed seeking population-based studies in which BMD was measured by dual-energy X-ray absorptiometry at the femoral neck in people aged 50 years and over. Age- and sex-specific mean ± SD BMD values (g/cm2) were extracted from eligible studies. Comparative risk assessment methodology was used to calculate PAFs of BMD for fractures. The theoretical minimum risk exposure distribution was estimated as the age- and sex-specific 90th centile from the Third National Health and Nutrition Examination Survey (NHANES III). Relative risks of fractures were obtained from a previous meta-analysis. Hospital data were used to calculate the fraction of the health burden of falls that was due to fractures. Results: Global deaths and DALYs attributable to low BMD increased from 103 000 and 3 125 000 in 1990 to 188 000 and 5 216 000 in 2010, respectively. The percentage of low BMD in the total global burden almost doubled from 1990 (0.12%) to 2010 (0.21%). Around one-third of falls-related deaths were attributable to low BMD. Conclusions: Low BMD is responsible for a growing global health burden, only partially representative of the real burden of osteoporosis

    Osteoporosis and fragility fractures

    No full text
    The prevalence of osteoporosis is expected to increase with the ageing of the world's population. This article reviews the epidemiology, risk factors and health burden of osteoporosis. In the Global Burden of Disease (GBD) Study 2005, osteoporosis is studied as a risk factor for fracture by considering the bone-mineral-density (BMD) measurement as the continuous exposure variable. We have performed a systematic review seeking population-based studies with BMD data measured by dual-X-ray absorptiometry (DXA). The femoral neck was selected as the unique location and all values were converted into Hologic® to enable inclusion of worldwide data for analysis. Provisional results on mean BMD values for different world regions are shown in age breakdowns for males and females 50 years or over, as well as mean T-scores using the young, white, female reference of National Health and Nutrition Examination Survey (NHANES) III. Results show remarkable geographical differences and a time trend towards improvement of the BMD values in Asian and European populations
    corecore