51 research outputs found

    Oxygen isotope composition of diatoms from sediments of Lake Kotokel (Buryatia).

    Get PDF
    This is a summary of new oxygen isotope data for diatoms from Lake Kotokel sediments, with implications for responses of the lake system and its environment to global change over the past 46 kyr. Fossil diatoms in all samples are free from visible contamination signatures and contain no more than 2.5% Al2O3, which ensures reliable reconstructions. The δ18O values in diatoms vary between +23.7 and +31.2‰ over the record. The results mainly represent diatom assemblages of summer blooming periods, except for the time span between 36 and 32 kyr, when the isotopic signal rather records a shift from summer to spring blooming conditions. Possible water temperature changes only partly explain the changes in the isotopic record. The observed isotopic patterns are produced mainly by isotope changes in lake water in response to variations in air temperature, hydrology, and atmospheric circulation in the region. During Marine Isotope Stage (MIS) 2 (Last Glacial maximum), high δ18Odiatom resulted from rapid evaporation and low fluvial inputs. The high δ18O values of about +29 to +30‰ during the first half of MIS 1 (Holocene interglacial) suggest an increased share of summer rainfalls associated with southern/southeastern air transport. The δ18O decrease to +24‰ during the second half of MIS 1 is due to the overall hemispheric cooling and increased moisture supply to the area by the Atlantic transport. The record of Lake Kotokel sediments provides an example of complex interplay among several climatic controls of δ18Odiatom in the Late Pleistocene and the Holocene

    Design of Object-Oriented Data Visualization System

    No full text
    The report is devoted to the data visualization system design and implementation, which provides the means for design of the image of the user's numeric information on the personal computer. The problems of design, architecture and operation of data visualization system which provides to user convenient means for constructing the numeric information image of required type is considered. Image constructing is executed by means of required sizes fields placing and filling of them by necessary content (coordinates system, graphs, inscriptions). User's interface with instrument system is object-oriented: after object (field or its content) choice user can manipulate of it, executing only those operations, that are determined for it as object of appointed function. Ergonomical and comfortable constructing is ensured by careful coordinated system of possible actions on each of image constructing stage and supported by icons menu and textual menu.

    Holocene oxygen isotope record of diatoms from Lake Kotokel (southern Siberia, Russia) and its palaeoclimatic implications

    Get PDF
    The oxygen isotope composition of diatom silica (d18Odiatom) from marine and lake sediments is helpful for the interpretation of the past climate and environments, especially when complemented by other proxy records. This paper presents a Holocene oxygen isotope record of diatoms from Lake Kotokel, located 2 km east of Lake Baikal in southern Siberia, Russia. The isotope record displays variations in d18Odiatom from +23.7 to +30.3‰ from about 11.5 ka BP until today. Comparing the isotope composition of recent Lake Kotokel water (mean d18O = -12‰) to that of the most recent diatom sample (d18O = +27.5‰), an isotope fractionation in the right order of magnitude was calculated. The Kotokel d18O diatom record is rather controlled by changes in the isotopic composition of the lake water rather than by lake temperature. Lake Kotokel is a dynamic system triggered by differential environmental changes closely linked with various lake-internal hydrological factors. A continuous depletion in d18O of 6.6‰ is observed from Early to Late Holocene, which is in line with other hemispheric environmental changes (i.e. a Mid- to Late Holocene cooling). Enhanced evaporation effects and higher relative supply from a southerly moisture source explain the relatively heavy isotopic composition in a rather cold Early Holocene. In summary, changes in the Holocene d18O diatom record of Lake Kotokel reflect variations in d18O of precipitation linked with both Tair as well as evaporation effects and, to a lesser degree, meltwater pulses from the mountainous hinterland and changing atmospheric moisture sources

    Molecular and isotopic composition of hydrate-bound and dissolved gases in the southern basin of Lake Baikal, based on an improved headspace gas method

    No full text
    Assessments of the molecular and isotopic composition of hydrate-bound and dissolved gases in pore water were conducted during the multi-phase gas hydrate project (MHP-09) cruise VER09-03 to the southern basin of Lake Baikal in September 2009. To avoid changes in gas composition during core sampling and transport, various headspace methods were investigated aimed at preserving the dissolved gases in pore water. When distilled water was added to the sediment samples, the concentrations of carbon dioxide and oxygen decreased because of dissolution into the water and/or microbial consumption. When the headspace was not flushed with inert gases, trace levels of hydrogen and ethylene were detected. The findings suggest that best preparation is achieved by flushing the headspace with helium, and adding a saturated aqueous solution of sodium chloride. This improved headspace method served to examine the molecular and isotopic compositions of gas samples retrieved at several new sites in the southern basin. Methane was the major component, and the proportion of ethane ranged widely from 0.0009 to 1.67 mol% of the total hydrocarbon gases. The proportions of propane and higher hydrocarbons were small or less than their detection limits. The carbon isotope signatures suggest that microbial-sourced methane and ethane were dominant in the Peschanka study area, whereas ethane was of thermogenic origin at all other study sites in the southern basin of Lake Baikal

    Model of formation of double structure gas hydrates in Lake Baikal based on isotopic data

    Get PDF
    We measured the isotopic compositions of methane (C1) and ethane (C2) of hydrate-bound gas and of dissolved gas in pore water retrieved from bottom sediments in Lake Baikal. Both structure I (sI:3%C2) and II (sII:14%C2) gas hydrates are observed in the same sediment cores in Kukuy K-2 mud volcano. We found that C2 dD of sI gas hydrate is larger than that of sII, whereas C1 d13C, C1 dD and C2 d13C values are practically the same in both hydrate structures. d13C of C1 and C2 of hydrate-bound gas are several permil smaller than those in pore water, showing that the current pore water is not the source of gas hydrates. These findings lead to a new model where the sII gas hydrates were formed prior to the sI hydrates

    Characteristics and varieties of gases enclathrated in natural gas hydrates retrieved at Lake Baikal

    No full text
    International audienceMolecular and stable isotope compositions of hydrate-bound gases collected from 59 hydrate-bearing sites between 2005 to 2019 in the southern and central sub-basins of Lake Baikal are reported. The δ2H of the hydrate-bound methane is distributed between − 310‰ and − 270‰, approximately 120‰ lower than its value in the marine environment, due to the difference in δ2H between the lake water and seawater. Hydrate-bound gases originate from microbial (primary and secondary), thermogenic, and mixed gas sources. Gas hydrates with microbial ethane (δ13C: − 60‰, δ2H: between − 310‰ and − 250‰) were retrieved at approximately one-third of the total sites, and their stable isotope compositions were lower than those of thermogenic ethane (δ13C: − 25‰, δ2H: − 210‰). The low δ2H of ethane, which has rarely been reported, suggests for the first time that lake water with low hydrogen isotope ratios affects the formation process of microbial ethane as well as methane. Structure II hydrates containing enclathrated methane and ethane were collected from eight sites. In thermogenic gas, hydrocarbons heavier than ethane are biodegraded, resulting in a unique system of mixed methane-ethane gases. The decomposition and recrystallization of the hydrates that enclathrate methane and ethane resulted in the formation of structure II hydrates due to the enrichment of ethane
    • …
    corecore