152 research outputs found

    A new species of Pharmacis Hübner, 1820 from Spain with a brief review of the genera Pharmacis and Korscheltellus Börner, 1920 (Lepidoptera, Hepialidae)

    Get PDF
    We here describe a new ghost moth (Hepialidae) species, Pharmacis cantabricus sp. n. from the Picos de Europa National Park, Cantabria, in northern Spain. The new species belongs to a group of mostly day-flying species that are restricted to the European Alps and some mountain ranges of southern Europe. Based on morphology and analysis of mitochondrial COI gene sequences, the new species is closely related to Pharmacis aemilianus (Constantini, 1911), an endemic of the Italian Apennines. However, Pharmacis cantabricus sp. n. can easily be distinguished from all related species based on both external and genitalic characters. We briefly review and illustrate all species of the genus Pharmacis Hübner, 1820 and discuss its relationship with the related genus Korscheltellus Börner, 1920. We reinstate Hepialus castillanus Oberthür, 1883 as a distinct species and transfer it to Korscheltellus (stat. rev., comb. n.)

    Human lymphoma mutations reveal CARD11 as the switch between self-antigen-induced B cell death or proliferation and autoantibody production

    Get PDF
    Self-tolerance and immunity are actively acquired in parallel through a poorly understood ability of antigen receptors to switch between signaling death or proliferation of antigenbinding lymphocytes in different contexts. It is not known whether this tolerance-immunity switch requires global rewiring of the signaling apparatus or if it can arise from a single molecular change. By introducing individual CARD11 mutations found in human lymphomas into antigen-activated mature B lymphocytes in mice, we find here that lymphoma-derived CARD11 mutations switch the effect of self-antigen from inducing B cell death into T cell- independent proliferation, Blimp1-mediated plasmablast differentiation, and autoantibody secretion. Our findings demonstrate that regulation of CARD11 signaling is a critical switch governing the decision between death and proliferation in antigen-stimulated mature B cells and that mutations in this switch represent a powerful initiator for aberrant B cell responses in vivo

    Early appearance of germinal center–derived memory B cells and plasma cells in blood after primary immunization

    Get PDF
    Immunization with a T cell–dependent antigen elicits production of specific memory B cells and antibody-secreting cells (ASCs). The kinetic and developmental relationships between these populations and the phenotypic forms they and their precursors may take remain unclear. Therefore, we examined the early stages of a primary immune response, focusing on the appearance of antigen-specific B cells in blood. Within 1 wk, antigen-specific B cells appear in the blood with either a memory phenotype or as immunoglobulin (Ig)G1 ASCs expressing blimp-1. The memory cells have mutated VH genes; respond to the chemokine CXCL13 but not CXCL12, suggesting recirculation to secondary lymphoid organs; uniformly express B220; show limited differentiation potential unless stimulated by antigen; and develop independently of blimp-1 expression. The antigen-specific IgG1 ASCs in blood show affinity maturation paralleling that of bone marrow ASCs, raising the possibility that this compartment is established directly by blood-borne ASCs. We find no evidence for a blimp-1–expressing preplasma memory compartment, suggesting germinal center output is restricted to ASCs and B220+ memory B cells, and this is sufficient to account for the process of affinity maturation

    Plasma Cell Ontogeny Defined by Quantitative Changes in Blimp-1 Expression

    Get PDF
    Plasma cells comprise a population of terminally differentiated B cells that are dependent on the transcriptional regulator B lymphocyte–induced maturation protein 1 (Blimp-1) for their development. We have introduced a gfp reporter into the Blimp-1 locus and shown that heterozygous mice express the green fluorescent protein in all antibody-secreting cells (ASCs) in vivo and in vitro. In vitro, these cells display considerable heterogeneity in surface phenotype, immunoglobulin secretion rate, and Blimp-1 expression levels. Importantly, analysis of in vivo ASCs induced by immunization reveals a developmental pathway in which increasing levels of Blimp-1 expression define developmental stages of plasma cell differentiation that have many phenotypic and molecular correlates. Thus, maturation from transient plasmablast to long-lived ASCs in bone marrow is predicated on quantitative increases in Blimp-1 expression

    Differential requirement for OBF-1 during antibody-secreting cell differentiation

    Get PDF
    Resting B cells can be cultured to induce antibody-secreting cell (ASC) differentiation in vitro. A quantitative analysis of cell behavior during such a culture allows the influences of different stimuli and gene products to be measured. The application of this analytical system revealed that the OBF-1 transcriptional coactivator, whose loss impairs antibody production in vivo, has two effects on ASC development. Although OBF-1 represses early T cell–dependent (TD) differentiation, it is also critical for the completion of the final stages of ASC development. Under these conditions, the loss of OBF-1 blocks the genetic program of ASC differentiation so that Blimp-1/prdm1 induction fails, and bcl-6, Pax5, and AID are not repressed as in control ASC. Retroviral complementation confirmed that OBF-1 was the critical entity. Surprisingly, when cells were cultured in lipopolysaccharide to mimic T cell–independent conditions, OBF-1–null B cells differentiated normally to ASC. In the OBF-1−/− ASC generated under either culture regimen, antibody production was normal or only modestly reduced, revealing that Ig genes are not directly dependent on OBF-1 for their expression. The differential requirement for OBF-1 in TD ASC generation was confirmed in vivo. These studies define a new regulatory role for OBF-1 in determining the cell-autonomous capacity of B cells to undergo terminal differentiation in response to different immunological signals

    Interleukin-10-Producing Plasmablasts Exert Regulatory Function in Autoimmune Inflammation

    Get PDF
    SummaryB cells can suppress autoimmunity by secreting interleukin-10 (IL-10). Although subpopulations of splenic B lineage cells are reported to express IL-10 in vitro, the identity of IL-10-producing B cells with regulatory function in vivo remains unknown. By using IL-10 reporter mice, we found that plasmablasts in the draining lymph nodes (dLNs), but not splenic B lineage cells, predominantly expressed IL-10 during experimental autoimmune encephalomyelitis (EAE). These plasmablasts were generated only during EAE inflammation. Mice lacking plasmablasts by genetic ablation of the transcription factors Blimp1 or IRF4 in B lineage cells developed an exacerbated EAE. Furthermore, IRF4 positively regulated IL-10 production that can inhibit dendritic cell functions to generate pathogenic T cells. Our data demonstrate that plasmablasts in the dLNs serve as IL-10 producers to limit autoimmune inflammation and emphasize the importance of plasmablasts as IL-10-producing regulatory B cells

    Human Coronavirus NL63 Open Reading Frame 3 encodes a virion-incorporated N-glycosylated membrane protein

    Get PDF
    Background: Human pathogenic coronavirus NL63 (hCoV-NL63) is a group 1 (alpha) coronavirus commonly associated with respiratory tract infections. In addition to known non-structural and structural proteins all coronaviruses have one or more accessory proteins whose functions are mostly unknown. Our study focuses on hCoV-NL63 open reading frame 3 (ORF 3) which is a highly conserved accessory protein among coronaviruses. Results: In-silico analysis of the 225 amino acid sequence of hCoV-NL63 ORF 3 predicted a triple membranespanning protein. Expression in infected CaCo-2 and LLC-MK2 cells was confirmed by immunofluorescence and Western blot analysis. The protein was detected within the endoplasmatic reticulum/Golgi intermediate compartment (ERGIC) where coronavirus assembly and budding takes place. Subcellular localization studies using recombinant ORF 3 protein transfected in Huh-7 cells revealed occurrence in ERGIC, Golgi- and lysosomal compartments. By fluorescence microscopy of differently tagged envelope (E), membrane (M) and nucleocapsid (N) proteins it was shown that ORF 3 protein colocalizes extensively with E and M within the ERGIC. Using N-terminally FLAG-tagged ORF 3 protein and an antiserum specific to the C-terminus we verified the proposed topology of an extracellular N-terminus and a cytosolic C-terminus. By in-vitro translation analysis and subsequent endoglycosidase H digestion we showed that ORF 3 protein is N-glycosylated at the N-terminus. Analysis of purified viral particles revealed that ORF 3 protein is incorporated into virions and is therefore an additional structural protein. Conclusions: This study is the first extensive expression analysis of a group 1 hCoV-ORF 3 protein. We give evidence that ORF 3 protein is a structural N-glycosylated and virion-incorporated protein.Web of Scienc

    The Role of BACH2 in T Cells in Experimental Malaria Caused by Plasmodium chabaudi chabaudi AS

    Get PDF
    BTB and CNC Homology 1, Basic Leucine Zipper Transcription Factor 2 (BACH2) is a transcription factor best known for its role in B cell development. More recently, it has been associated with T cell functions in inflammatory diseases, and has been proposed as a master transcriptional regulator within the T cell compartment. In this study, we employed T cell-specific Bach2-deficient (B6.Bach2ΔT) mice to examine the role of this transcription factor in CD4+ T cell functions in vitro and in mice infected with Plasmodium chabaudi AS. We found that under CD4+ T cell polarizing conditions in vitro, Th2, and Th17 helper cell subsets were more active in the absence of Bach2 expression. In mice infected with P. chabaudi AS, although the absence of Bach2 expression by T cells had no effect on blood parasitemia or disease pathology, we found reduced expansion of CD4+ T cells in B6.Bach2ΔT mice, compared with littermate controls. Despite this reduction, we observed increased frequencies of Tbet+ IFNγ+ CD4+ (Th1) cells and IL-10-producing Th1 (Tr1) cells in mice lacking Bach2 expression by T cells. Studies in mixed bone marrow chimeric mice revealed T cell intrinsic effects of BACH2 on hematopoietic cell development, and in particular, the generation of CD4+ and CD8+ T cell subsets. Furthermore, T cell intrinsic BACH2 was needed for efficient expansion of CD4+ T cells during experimental malaria in this immunological setting. We also examined the response of B6.Bach2ΔT mice to a second protozoan parasitic challenge with Leishmania donovani and found similar effects on disease outcome and T cell responses. Together, our findings provide new insights into the role of BACH2 in CD4+ T cell activation during experimental malaria, and highlight an important role for this transcription factor in the development and expansion of T cells under homeostatic conditions, as well as establishing the composition of the effector CD4+ T cell compartment during infection

    A preliminary molecular phylogeny of shield-bearer moths (Lepidoptera: Adeloidea: Heliozelidae) highlights rich undescribed diversity

    Get PDF
    Heliozelidae are a widespread, evolutionarily early diverging family of small, day-flying monotrysian moths, for which a comprehensive phylogeny is lacking. We generated the first molecular phylogeny of the family using DNA sequences of two mitochondrial genes (COI and COII) and two nuclear genes (H3 and 28S) from 130 Heliozelidae specimens, including eight of the twelve known genera: Antispila, Antispilina, Coptodisca, Heliozela, Holocacista, Hoplophanes, Pseliastis, and Tyriozela. Our results provide strong support for five major Heliozelidae clades: (i) a large widespread clade containing the leaf-mining genera Antispilina, Coptodisca and Holocacista and some species of Antispila, (ii) a clade containing most of the described Antispila, (iii) a clade containing the leaf-mining genus Heliozela and the monotypic genus Tyriozela, (iv) an Australian clade containing Pseliastis and (v) an Australian clade containing Hoplophanes. Each clade includes several new species and potentially new genera. Collectively, our data uncover a rich and undescribed diversity that appears to be especially prevalent in Australia. Our work highlights the need for a major taxonomic revision of the family and for generating a robust molecular phylogeny using multi-gene approaches in order to resolve the relationships among clades

    IL-17-producing γδ T cells switch migratory patterns between resting and activated states

    Get PDF
    Interleukin 17-producing γδ T (γδT17) cells have unconventional trafficking characteristics, residing in mucocutaneous tissues but also homing into inflamed tissues via circulation. Despite being fundamental to γδ T17-driven early protective immunity and exacerbation of autoimmunity and cancer, migratory cues controlling γδT17 cell positioning in barrier tissues and recruitment to inflammatory sites are still unclear. Here we show that γδT17 cells constitutively express chemokine receptors CCR6 and CCR2. While CCR6 recruits resting γδT17 cells to the dermis, CCR2 drives rapid γδT17 cell recruitment to inflamed tissues during autoimmunity, cancer and infection. Downregulation of CCR6 by IRF4 and BATF upon γδT17 activation is required for optimal recruitment of γδT17 cells to inflamed tissue by preventing their sequestration into uninflamed dermis. These findings establish a lymphocyte trafficking model whereby a hierarchy of homing signals is prioritized by dynamic receptor expression to drive both tissue surveillance and rapid recruitment of γδT17 cells to inflammatory lesionsThis work was supported by National Health and Medical Research Council project grants 1066781 and 1054925. A.K. is supported by the Sylvia and Charles Viertel foundation
    • …
    corecore