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SUMMARY

B cells can suppress autoimmunity by secreting
interleukin-10 (IL-10). Although subpopulations of
splenic B lineage cells are reported to express IL-
10 in vitro, the identity of IL-10-producing B cells
with regulatory function in vivo remains unknown.
By using IL-10 reporter mice, we found that plasma-
blasts in the draining lymph nodes (dLNs), but not
splenic B lineage cells, predominantly expressed
IL-10 during experimental autoimmune encephalo-
myelitis (EAE). These plasmablasts were generated
only during EAE inflammation. Mice lacking plas-
mablasts by genetic ablation of the transcription fac-
tors Blimp1 or IRF4 in B lineage cells developed an
exacerbated EAE. Furthermore, IRF4 positively regu-
lated IL-10 production that can inhibit dendritic cell
functions to generate pathogenic T cells. Our data
demonstrate that plasmablasts in the dLNs serve
as IL-10 producers to limit autoimmune inflammation
and emphasize the importance of plasmablasts as
IL-10-producing regulatory B cells.

INTRODUCTION

In the context of autoimmune disorders, B cells can be patho-

genic effectors through their production of autoantibodies.

However, evidence is accumulating that B cells can also be

immunosuppressive in T-cell-mediated autoimmune and in-

flammatory diseases. Examples are collagen-induced arthritis

(CIA) (Mauri et al., 2003), systemic lupus erythematosus (SLE)

(Watanabe et al., 2010), and experimental autoimmune enceph-

alomyelitis (EAE), an animal model of human multiple sclerosis
1040 Immunity 41, 1040–1051, December 18, 2014 ª2014 Elsevier In
(MS) (Fillatreau et al., 2002; Matsushita et al., 2008). The regu-

latory function of B cells is considered to be mainly determined

by the secretion of interleukin-10 (IL-10), which is controlled by

signals from Toll-like receptors (TLRs) (Lampropoulou et al.,

2008), CD40 (Mauri et al., 2003), and B cell antigen receptors

(BCR) (Fillatreau et al., 2002). To date, several unique popula-

tions of splenic IL-10-competent B cells (regulatory B cells)

have been described. They include CD21hiCD23hiIgMhi transi-

tional 2-marginal zone precursor (T2-MZP) B cells (Evans

et al., 2007) and CD1dhiCD5+ B cells (Matsushita et al., 2008)

that have been reported to inhibit autoimmunity. In addition,

splenic CD138+ plasma cells were also reported to express

IL-10 (Shen et al., 2014). However, these populations produce

detectable IL-10 only when stimulated ex vivo. Thus, despite

progress made in understanding the importance of B-cell-

derived IL-10, there has been no definitive identification of

in vivo IL-10-producing B cells with regulatory function during

autoimmunity.

In humans, a role for B-cell-derived IL-10 in downregulation of

inflammatory reactions has been suggested in autoimmune dis-

eases such as MS or SLE (Blair et al., 2010; Duddy et al., 2007;

Mauri and Bosma, 2012). Treatment with rituximab for B cell

depletion efficiently ameliorated the disease progression in

some autoimmune diseases, presumably because of elimination

of pathogenic B cells (Gürcan et al., 2009). However, this might

work in part because of selective survival and repopulation of

regulatory B cell subsets (Duddy et al., 2007; Todd et al.,

2014). The functional and clinical importance of human IL-10-

competent B cells has begun to be elucidated but more must

be learned about their characteristics.

Here we have exploited IL-10 reporter mice to identify in vivo

IL-10-producing B cells and demonstrate that CD138+ plasma-

blasts, proliferating immature plasma cells, are the predominant

source of IL-10 during EAE development. IL-10-producing plas-

mablasts were generated specifically in the draining lymph no-

des (dLNs) but not in the spleen after EAE induction. By genetic
c.
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Figure 1. Plasmablasts Are the Dominant IL-10-Producing B Lineage Cells during EAE

(A) Flow cytometry of Venus expression in B220+ and CD138+CD44hi cells harvested from spleen, dLNs, and spinal cords of wild-type (shaded histogram) and

Il10Venus/+ (open histogram) mice 14 days after MOG35-55 immunization. Percentages of Venus+ B cells are shown.

(B) Flow cytometry of cells from spleen and dLNs of Prdm1gfp/+ mice 14 days after MOG35-55 immunization. GFPint and GFPhi populations of CD138+ cells are

gated and their percentages are shown.

(C) Flow cytometry of CD138+CD44hi cells from spleen and dLNs of wild-type mice 14 days after MOG35-55 immunization. Percentages of Ki-67+ cells are shown.

Data are representative of at least three independent experiments in (A)–(C).

(D) Absolute number of CD138+CD44hi or their Venus+ cells from spleen and dLNs of Il10Venus/+ mice before and 7, 14, 21, and 28 days after MOG35-55 im-

munization. Data are representative of two independent experiments. Data are presented as mean ± SEM for four mice. NS, not significant. *p < 0.05 versus day

0 (Welch’s t test).

See also Figure S1.
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approaches, we show that plasmablasts in the dLNswere critical

for limiting EAE progression. In addition, IL-10 production by

plasmablasts requires IRF4 and can prevent dendritic cells

from generating pathogenic T cells. Furthermore, human plas-

mablasts also preferentially secrete IL-10, further highlighting

plasmablasts as the IL-10-producing regulatory B cells.

RESULTS

Plasmablasts Are the Main IL-10-Producing B Cells
during EAE
To identify in vivo IL-10-producing B cells and their distribution

during autoimmune disease, we elicited EAE in mice carrying

a transgene of Venus, a variant of yellow fluorescent protein

(Il10Venus/+), which allows tracking of IL-10+ cells (Atarashi

et al., 2011). Although previous reports suggested that several

splenic B cell subsets can produce IL-10 (Mauri and Bosma,
Imm
2012; Yanaba et al., 2008), we observed little Venus expression

in B220+ B cells before and 14 days after immunization with

myelin oligodendrocyte glycoprotein peptide (MOG35-55) (Fig-

ure 1A and Figures S1A–S1D available online). In contrast,

CD138+CD44hi cells expressed Venus markedly in the dLNs,

only modestly in spleen, and not at all in the spinal cords (Fig-

ures 1A, S1C, and S1D). ELISA assays also demonstrated that

the CD138+CD44hi population expressing Venus had a poten-

tial to produce IL-10 (Figure S1E). CD138+ cells are composed

of highly proliferative plasmablasts and nondividing plasma

cells that express intermediate and high amounts of Blimp1

(encoded by the Prdm1), respectively (Kallies et al., 2004). By

utilizing EAE-induced heterozygous Prdm1gfp knockin mice

(Prdm1gfp/+), we confirmed that CD138+ cells in spleen and

dLNs were largely GFPhi plasma cells and GFPint plasmablasts,

respectively (Figure 1B). CD138+CD44hi cells in dLNs, but not

spleen, were proliferating, as demonstrated by Ki-67 staining
unity 41, 1040–1051, December 18, 2014 ª2014 Elsevier Inc. 1041
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(Figure 1C). Whereas the absolute number of CD138+CD44hi

cells and their Venus+ cells was essentially constant in spleen,

those in dLNs expanded to a peak on day 14 after MOG35-55

immunization (Figure 1D). Thus, these results indicate that

CD138+ plasmablasts in dLNs are the principal IL-10-producing

B lineage cells during EAE.

Plasmablasts in the dLNs Negatively Regulate EAE
Inflammation
A key question is whether IL-10+CD138+ cells are functionally

competent to inhibit EAE. To directly address this issue, we

elicited EAE in mice conditionally lacking Blimp1 in B lineage

cells by crossing of Prdm1f/f with Mb1Cre/+ mice (called

Prdm1f/fMb1Cre/+ here). Plasma cell differentiation and antibody

responses were impaired in these mice (Figures S2A and S2B).

EAE development in Prdm1f/fMb1Cre/+ mice was greatly exacer-

bated as compared toMb1Cre/+ control mice (Figure 2A). Consis-

tent with the exacerbated EAE, CD4+ T cells, particularly those

producing interferon-g (IFN-g) (Th1 cells) and IL-17 (Th17 cells),

increased in the spinal cords of Prdm1f/fMb1Cre/+ mice (Fig-

ure 2B). When stimulated with MOG35-55, Prdm1f/fMb1Cre/+ LN

cells produced more IFN-g and IL-17 than Mb1Cre/+ cells (Fig-

ure 2C). Thus, we conclude that CD138+ plasmablasts/plasma

cells limit EAE inflammation.

Given that IL-10-producing CD138+ cells are detected in both

spleen and dLNs during EAE, it remained important to test which

secondary lymphoid organ is critical for EAE attenuation. L-se-

lectin (CD62L), also known as Sell, is an essential homing recep-

tor that governs migration into the peripheral LNs. To explore the

involvement of LN B cells in EAE suppression, we generated

mixed bone marrow (BM) chimeras by transferring a mixture of

BM cells from mMT (80%) and Sell�/� (20%) mice into lethally

irradiated wild-type mice. The Sell deficiency was restricted

to B cells in the resultant BM chimera (B-Sell�/�) mice. These

mice lacked B lineage cells in LNs, but not spleen, and ex-

hibited increased disease severity compared with control mice

(Figure 2D). In striking contrast, mice that had splenectomy

developed EAE normally (Figure 2E). B cell population and plas-

mablast differentiation in the dLNs was not affected by splenec-

tomy. Collectively, these data suggest that plasmablasts in the

dLNs negatively regulate EAE, but that splenic B lineage cells

are dispensable for its suppression.

Nevertheless, published studies have claimed a functionally

important role of splenic B cells to reduce EAE in adaptive trans-

fer experiments (Fillatreau et al., 2002; Matsushita et al., 2008).

Based on our above findings, we reasoned that adoptively

transferred splenic B cells might give rise to plasmablasts in

the dLNs that then regulate EAE. We therefore examined EAE

in mMT mice with adoptively transferred splenic B cells isolated

from Prdm1f/fMb1Cre/+ or Sell�/� mice and control mice.

Although the mice that received B cells from control mice

resolved EAE symptoms, these suppressive effects were not

observed when Prdm1f/fMb1Cre/+ and Sell�/� B cells were trans-

ferred (Figures 2F and 2H). As expected, plasmablast differenti-

ation from control B cells, but not Prdm1f/fMb1Cre/+ and Sell�/�B

cells, occurred in LNs (Figures 2G and 2I). These results suggest

that splenic B cells can suppress EAE in an adoptive transfer

setting but that their plasmablast differentiation in the dLNs

might be required.
1042 Immunity 41, 1040–1051, December 18, 2014 ª2014 Elsevier In
EAE Induces Generation of GC-Independent
Plasmablasts that Produce IL-10 Preferentially
To gain insight into cellular aspects of IL-10-producing plas-

mablasts in the dLNs, we first investigated the cell surface

phenotype. Most LN plasmablasts in EAE mice expressed high

amounts of CD43, CXCR4, and major histocompatibility com-

plex II (MHCII) and low amounts of B220, CD38, andCXCR5 (Fig-

ure 3A). Many of them also had undergone immunoglobulin (Ig)

class-switch recombination (Figure 3B), which commonly occurs

in both extrafollicular and germinal center (GC) responses (Klein

and Dalla-Favera, 2008). Because an extensive expansion of

GC B cells in the dLNs was detected during EAE (Figure 3C),

we investigated the involvement of GCs in regulatory plasma-

blast generation. We elicited EAE in mice in which the transcrip-

tion factor Bcl6 was functionally disrupted by inserting a YFP

gene in both of the Bcl6 alleles (Bcl6yfp/yfp) (Kitano et al., 2011)

and found that Bcl6yfp/yfp mice exhibited normal EAE despite of

their lack of GC B cells (Figures 3D and 3E). The plasmablast

generation was not significantly influenced by loss of Bcl6 (Fig-

ure 3E). Thus, EAE attenuation does not necessarily require GC

responses.

We next assessed the potential contribution of anti-inflamma-

tory cytokines besides IL-10 in plasmablasts. Because pub-

lished studies have suggested that splenic B cells or plasma

cells secrete IL-4, IL-13, IL-35, and transforming growth factor-

b (TGF-b) (Mauri, 2010; Shen et al., 2014), we examined their

expression in plasmablasts by quantitative RT-PCR analysis. In

agreement with our data obtained with IL-10 reporter mice,

CD138+CD44hi plasmablasts, but not CD19+CD138� B cells,

highly expressed IL-10 (Figure 3F). By contrast, the amount of

Il4, Il13, Il27 (Il27b/p28), Il35 (Il12a/Il27b), and Tgfb1 mRNA

in CD138+CD44hi cells was decreased or comparable to that

in CD19+ cells. Consistent with that, ELISA and Bio-Plex sus-

pension assay demonstrated preferential IL-10 secretion by

CD138+CD44hi cells (Figure 3G). Although IL-6 and IFN-g pro-

duced by B cells have been reported to contribute to EAE

pathogenesis (Barr et al., 2012; Matsushita et al., 2006), CD138+

CD44hi cells had little expression of their mRNA and proteins.

Collectively, EAE-induced plasmablasts in the dLNs predomi-

nantly produce IL-10.

IRF4 Is Essential for Plasmablast IL-10 Production
We next investigated the mechanisms by which plasmablasts

produce IL-10. In a previous study, we found that B cells could

secrete IL-10 after BCR stimulation in a Ca2+ influx-dependent

way (Matsumoto et al., 2011). However, this occurred only

when B cells were preactivated with TLR agonists. Thus, we

reasoned that TLR-dependent transcription factors would be

required for plasmablast differentiation and/or IL-10 production.

To this end, LPS-stimulated B cells from Prdm1gfp/+ mice were

sorted on the basis of GFP and CD138 expression followed by

stimulation with anti-IgM (Figure 4A). IL-10 secretion was

restricted to GFP+ fractions and drastically enhanced by

BCR ligation (Figure 4B). Because both CD138+GFP+ and

CD138�GFP+ populations are known to have characteristics of

antibody secretion and proliferative responses (Kallies et al.,

2004), we concluded that plasmablasts are the principal IL-10

producers in vitro.Unexpectedly, however,B cells lackingBlimp1

proteins secreted IL-10normallydespite having impairedCD138+
c.
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Figure 2. Plasmablasts in the dLNs Negatively Regulate EAE Inflammation

(A) Clinical EAE scores for Mb1Cre/+ and Prdm1f/fMb1Cre/+ mice immunized with MOG35-55. The EAE score is shown as mean ± SEM for six to seven mice.

(B) Absolute number of cells from spinal cords harvested fromMb1Cre/+ and Prdm1f/fMb1Cre/+ mice 14 days after MOG35-55 immunization. Data are presented as

mean ± SEM for five mice.

(C) ELISA of IFN-g and IL-17 by cells isolated from the dLNs of Mb1Cre/+ and Prdm1f/fMb1Cre/+ mice 14 days after EAE induction followed by stimulation with

MOG35-55 for 48 hr. Data are presented as mean ± SD.

(A–C) *p < 0.05 versus Mb1Cre/+ mice (Mann-Whitney U test).

(D) Clinical EAE scores for B-Sell�/� (chimeric mice generated by transplanting a mixture of BM cells from mMT (80%) and Sell�/� (20%) mice and two control

chimera groups: wild-type mice lethally irradiated and reconstituted with 80% mMT plus 20%wild-type bone marrow (B-WT) or reconstituted with 80%wild-type

plus 20% Sell�/� bone marrow (Sell20%). The absolute number of B220+ and CD138+CD44hi cells harvested from spleen and dLNs of chimeras 14 days after

MOG35-55 immunization is shown on the right. Data are shown as mean ± SEM for five to ten mice. *p < 0.05 versus B-WT mice (Mann-Whitney U test).

(E) Clinical EAE scores for sham-operated, splenectomized, and intact wild-type mice immunized with MOG35-55. Absolute number of B220+ and CD138+CD44hi

cells from dLNs of sham-operated and splenectomized mice 14 days after MOG35-55 immunization is shown on the right. Data are shown as mean ± SEM for five

to seven mice. NS, not significant (Mann-Whitney U test).

(F) Clinical EAE scores for mMT mice immunized with MOG35-55 after injecting splenic B cells harvested from Mb1Cre/+ and Prdm1f/fMb1Cre /+ mice 28 days after

EAE induction. The EAE score is shown as mean ± SEM for five to six mice. *p < 0.05 versus Prdm1f/fMb1Cre/+ B cells (Mann-Whitney U test).

(G) Flow cytometry of cells from dLNs of mMT mice immunized for 12 days with MOG35-55 after injecting splenic Mb1Cre/+ and Prdm1f/fMb1Cre/+ B cells.

(H) Clinical EAE scores for mMTmice immunized with MOG35-55 after injecting splenic B cells harvested from wild-type and Sell�/�mice. The EAE score is shown

as mean ± SEM for five to nine mice. *p < 0.05 versus Sell�/� B cells (Mann-Whitney U test).

(I) Flow cytometry of cells from dLNs of mMTmice immunized for 12 days with MOG35-55 after injecting splenic wild-type and Sell�/� B cells. CD19+ and CD138+

cells are gated and their percentages are shown (G and I).

Data are representative from three (A–D and F) or two (E and G–I) independent experiments. See also Figure S2.
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Figure 3. EAE Induces Generation of GC-Independent Plasmablasts that Produce IL-10 Preferentially
(A) Flow cytometry of CD19+CD138� (black histogram, gated as in the left-most panel) and CD138+CD44hi cells (red histogram, gated as in second panel from the

left) harvested from dLNs of wild-type mice 14 days after MOG35-55 immunization.

(B) Flow cytometry of CD138+CD44hi cells harvested from dLNs of wild-type mice 14 days after MOG35-55 immunization. Percentages of Ig+ cells are shown.

(C) Absolute number of FAS+GL7+B220+ (GC) B cells from dLNs harvested from wild-type mice before and 7, 14, 21, and 28 days after MOG35-55 immunization.

Data are presented as mean ± SEM for five to six mice. *p < 0.05 versus day 0 (Mann-Whitney U test).

(D) Clinical EAE scores for wild-type and Bcl6yfp/yfp mice immunized with MOG35-55. The EAE score is shown as mean ± SEM for seven mice.

(legend continued on next page)
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Figure 4. IRF4 Is Essential for Plasmablast IL-10 Production

(A) Flow cytometry of B cells isolated from spleen of Prdm1gfp/+ mice and cultured with LPS for 48 hr. Four populations—GFP�CD138� (fraction 1), GFP+CD138�

(fraction 2), GFP+CD138+ (fraction 3), and GFP�CD138+ (fraction 4) cells—were sorted and assayed in (B).

(B) ELISA of IL-10 secreted by the sorted B cells after stimulation with anti-IgM for 24 hr.

(C) ELISA of IL-10 secreted by B cells isolated from peripheral LNs ofMb1Cre/+ and Prdm1f/fMb1Cre/+ mice and cultured with LPS for 48 hr followed by stimulation

with anti-IgM for 24 hr.

(D) ELISA of IL-10 secreted by B cells isolated from peripheral LNs of wild-type and Irf4�/� mice and cultured with LPS for 48 hr followed by stimulation with anti-

IgM for 24 hr.

(E) ELISA of IL-10 secreted byGFP+ cells sorted from LPS-activated wild-type and Irf4�/�B cells retrovirally transducedwith GFP alone (Cont) or IRF4 followed by

stimulation with anti-IgM for 24 hr.

(F) ChIP analysis of GFP+ plasmablasts and GFP�B cells sorted from LPS-activated Prdm1gfp/+ B cells, stimulated with anti-IgM for 30min, and then precipitated

with anti-IRF4 Ab or goat IgG. Input DNA and precipitated DNA were quantified by RT-PCR with PCR primers specific for CNS9 and promoter (Prom) regions of

Il10 or 30 region of Cd19 (Cont). Data shown are pooled from two independent experiments.

(G) ELISA of IL-10 secreted by GFP+ cells sorted from LPS-activated wild-type and Irf4�/� B cells retrovirally transduced with GFP alone (Cont) or constitutively

active calcineurin (caCN) followed by stimulation with anti-IgM for 24 hr. NS, not significant.

(H) Clinical EAE scores for chimeric mice in which only B cells lacked IRF4 (B-Irf4�/�; wild-type mice lethally irradiated and reconstituted with 80% mMT plus 20%

Irf4�/� bonemarrow) and two control chimera groups: wild-typemice lethally irradiated and reconstitutedwith 80% mMTplus 20%wild-type bonemarrow (B-WT)

or reconstituted with 80% wild-type plus 20% Irf4�/� bone marrow (Irf420%). The EAE score is shown as mean ± SEM for five to six mice. *p < 0.05 versus B-WT

mice (Mann-Whitney U test).

(B–G) Data are presented as mean ± SD. *p < 0.05, **p < 0.001 (Student’s t test).

Data are representative of three (A–E and G) or two (H) independent experiments. See also Figures S3 and S4.
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cell generation (Figures 4C, S3A, and S3B), suggesting that

Blimp1 in developing plasmablasts is dispensable for IL-10 pro-

duction. Importantly, B cells lacking Blimp1 fail to fully differen-

tiate into plasma cells, but rather initiate this differentiation

pathway (Kallies et al., 2007;Kallies andNutt, 2007;Shapiro-She-

lef et al., 2003). Therefore, we next focused on the functional

importance of IRF4 because it is a critical factor in the early phase

ofplasmacell differentiationandoneof thedownstreamtargetsof

TLR and BCR signaling (Mittrücker et al., 1997; Oracki et al.,

2010). LPS-activated Irf4�/� B cells had impaired IL-10 secretion
(E) Absolute number of each B cell subset from spleen and dLNs harvested from

presented as mean ± SEM for six mice. *p < 0.05 versus wild-type mice (Mann-W

(F and G) Quantitative RT-PCR (F) and ELISA and Bio-Plex cytokine (G) analysis

mice 14 days after MOG35-55 immunization. For ELISA and Bio-Plex suspension

with PMA and ionomycin for 5 hr (G). Data are presented as mean ± SD. Abbrev

(Student’s t test).

Data are representative from three (A, B, and F) or two (C–E and G) independent

Imm
after BCR ligation (Figure 4D). Reciprocally, retroviral expression

of IRF4 in wild-type B cells substantially increased IL-10 produc-

tion and partially rescued it in Irf4�/� B cells (Figure 4E). Further-

more, chromatin immunoprecipitation (ChIP) analysis revealed

that IRF4 in plasmablasts bound to the Il10 CNS9 region, which

controls Il10 expression and is located approximately 9.1 kbp up-

stream of the transcription start site (Lee et al., 2009), though this

binding frequencywasunaffectedbyBCRstimulation (Figure 4F).

These results imply that IRF4 not only induces plasmablast gen-

eration but also directly regulates Il10 expression. Nuclear factor
wild-type and Bcl6yfp/yfp mice 28 days after MOG35-55 immunization. Data are

hitney U test). NS, not significant.

of CD19+CD138� and CD138+CD44hi cells harvested from dLNs of wild-type

assay, the isolated CD19+CD138� and CD138+CD44hi cells were stimulated

iations: <DL, below detection limit. *p < 0.05, **p < 0.001 versus CD19+ cells

experiments.
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Figure 5. Plasmablasts Inhibit Dendritic Cell Function to Generate Autoreactive T Cells
(A) Histological analysis of dLNs harvested from wild-type mice 14 days after MOG35-55 immunization. Sections were stained with B220 and TCR-b Abs (left) or

with CD11c and CD138 Abs (right). Original magnification, 310; scale bars represent 100 mm.

(B) Flow cytometry of IL-10R expression by cells harvested from dLNs of wild-type mice 14 days after MOG35-55 immunization. Cells were stained with an IL-10R

mAb (open histogram) or isotype control (shaded histogram).

(C) Flow cytometry of CD11c+ cells harvested from dLNs of wild-type mice 14 days after MOG35-55 immunization followed by stimulation with LPS alone (shaded

histogram) or supernatants from wild-type plasmablasts (PB) (WT PB sup; black histogram) and Il10�/� plasmablasts (Il10�/� PB sup; red histogram) activated

with LPS and then anti-IgM.

(D) Quantitative RT-PCR analysis of Il6 and Il12a transcripts in CD11c+ cells harvested from dLNs of wild-type mice 14 days after MOG35-55 immunization,

stimulated with LPS orWT and Il10�/� PB sup, normalized to the expression ofGapdh. Data are presented asmean ± SD. *p < 0.05 versus DC treated with Il10�/�

PB sup (Student’s t test).

(E and F) Cytokine profiles of TCRMOG-expressing naive CD4+ T cells cocultured with dLN CD11c+ cells stimulated with LPS or WT and Il10�/� PB sup in the

absence (E) or presence (F) of TGF-b together with MOG35-55 for 72 hr. Percentages of IFN-g+ and/or IL-17+ cells are shown.

Results represent one of three similar experiments. See also Figure S5.
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of activated T cells (NFAT), which is activated by Ca2+ and the

calmodulin-dependent phosphatase calcineurin, is also vital for

BCR-induced IL-10 production (Matsumoto et al., 2011). Retro-

viral expression of a constitutively active form of calcineurin A

(caCN) markedly increased BCR-induced IL-10 production in an

IRF4-dependent manner (Figure 4G), suggesting that NFAT-

dependent IL-10 production requires IRF4. Moreover, we found

that IRF4 has a B cell regulatory role in vivo because B-cell-spe-

cific Irf4-deficient chimeric mice lacking CD138+CD44hi cells in

the dLNs became susceptible to EAE (Figures 4H and S4).

Together, these data indicate that IRF4 is essential for B cell

IL-10 production to suppress EAE.

Plasmablast-Derived IL-10 Inhibits Dendritic Cell
Function to Generate Pathogenic T Cells
We next elucidated the mechanisms by which plasmablasts

suppress EAE. Immunohistochemical analysis of the dLNs in
1046 Immunity 41, 1040–1051, December 18, 2014 ª2014 Elsevier In
EAE-induced mice revealed that CD138+ plasmablasts were

mainly colocalized with CD11c+ dendritic cells (DCs) in the extra-

follicular region between T cell zones and B cell follicles (Fig-

ure 5A). Given that DCs, but not T and B cells, expressed detect-

able amounts of IL-10 receptor (IL-10R) (Figure 5B), we next

examined whether DC function is affected by plasmablast-

derived IL-10. When DCs were stimulated with supernatants

derived from wild-type plasmablasts activated with LPS and

then anti-IgM, the expression of MHCII, CD40, CD80, and

CD86 was unchanged, but Il6 and Il12 mRNA was significantly

decreased. This effect was not observed with Il10�/� plasma-

blasts (Figures 5C and 5D). Consistent with these results, Th1

cell differentiation of MOG-specific T cells was markedly pre-

vented by supernatants from wild-type, but not Il10�/�, plasma-

blasts when cocultured with DCs (Figure 5E). Very similar results

were obtained with TGF-b-mediated Th17 cell generation (Fig-

ure 5F). Furthermore, we also observed equivalent results
c.
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when DCs were cocultured with Blimp1-GFP+ plasmablasts

(Figure S5). Thus, these results suggest that IL-10-producing

plasmablasts inhibit DC functions to generate autoreactive

T cells. This does not exclude the possibility that other cell types

will be affected in vivo by plasmablast IL-10.

Human Plasmablasts Are IL-10-Producing B Cells
Our findings that plasmablasts represent the IL-10-producing B

cells in mice led us to test whether this also applies to humans.

B cells were isolated from peripheral blood of healthy donors

and cultured with CpG (a TLR9 agonist) and/or cytokine cock-

tails including IL-2, IL-6, and interferon-alpha (IFN-a), which

are known to provide conditions for effective plasmablast differ-

entiation (Jego et al., 2003; Joo et al., 2012). Indeed, we de-

tected CD27hiCD38+ putative plasmablasts after culture with

CpG, while concomitant treatment with CpG and cytokine cock-

tails induced a greater frequency of an additional population of

CD27intCD38+ cells as well as CD27hiCD38+ cells (Figure 6A). In

particular, IFN-a was considerably effective for CD27intCD38+

differentiation and essentially the same results were obtained

with IFN-b instead of IFN-a (Figure S6A). We found that IL-10

production was greatly induced in culture with a mixture of

CpG and cytokine cocktails (Figure 6B). Both CD27hiCD38+

and CD27intCD38+ populations had a progressive loss of

CD20, CD180, and Pax5 (Figures 6C, S6B, and S6C). Inversely,

they had higher expression of IRF4, Blimp1, and XBP1 proteins

and their transcripts (Figures 6C and S6C) and showed morpho-

logical maturation into plasma cells, as displayed by larger size

with abundant cytoplasm, eccentric nuclei, and perinuclear

haloes (Figure 6D). Consistent with these observations, both

CD27hiCD38+ and CD27intCD38+ cells substantially secreted

IgM (Figure 6E). Given the lack of a human mature plasma cell

marker CD138 (Figure S6B), CD27intCD38+ cells as well as

CD27hiCD38+ cells can be considered as plasmablasts whereas

the CD27hi cells apparently are more mature than CD27int cells

in view of their phenotypes. To determine which populations

produce IL-10, we purified four fractions based on CD27

and CD38 expression after culture. ELISA assay showed that

CD27intCD38+ plasmablasts selectively secreted IL-10 (Fig-

ure 6F). As a further test of this finding, we conducted IL-10

secretion assay by using IL-10 capture and detection antibodies,

which allow us to detect live IL-10-secreting cells and found that

the majority of IL-10+ B cells consisted of CD27intCD38+ cell

fraction (Figure 6G). Of note, this IL-10+CD27intCD38+ population

substantially secreted IgM, as assessed by ELISPOT assay (Fig-

ure 6H), suggesting that IL-10-producing B cells are Ig-secreting

CD27intCD38+ plasmablasts.

We next addressed the issue of why CD27int, but not CD27hi,

plasmablasts produce IL-10. Given that freshly prepared

peripheral blood B cells consist of three major populations,

i.e., CD24loCD27�CD38� (naive mature), CD24hiCD27�CD38lo

(naive immature), and CD24hiCD27+CD38� (memory) cells (Fig-

ure 6I), the origin of each might be different. To test this hypoth-

esis, they were sorted and then cultured. Memory B cells were

predominantly differentiated into CD27hiCD38+ plasmablasts,

whereas naive immature B cells and mature B cells, albeit to a

lesser degree, became CD27intCD38+ plasmablasts (Figure 6I).

Naive B-cell-derived CD27int plasmablasts produced consider-

ably more IL-10 (Figures 6J, S6D, and S6E). Collectively, these
Imm
findings establish that human plasmablasts that arise from naive

and especially immature B cells, but not memory B cells, are the

major IL-10-producing B cells.

DISCUSSION

Our findings identify plasmablasts as the IL-10-producing B cells

that can suppress autoimmunity. This was the case for EAE,

where they were developed in the dLNs under the control of

Blimp1 and IRF4 and disease progressionwas enhanced by their

deletion. Furthermore, human plasmablasts also preferentially

secreted IL-10, and these cells were derived from naive but

not memory B cells.

It was previously thought that splenic B cells secrete the IL-10

that limits EAE. Instead, we found that CD138+ plasmablasts in

the dLNs were the major producers of this cytokine during EAE.

This was the case when assessed by Il10Venus/+ reporter mice or

quantitative RT-PCR. In accordance with previous reports using

several other IL-10 reporter lines injected with LPS or infected

with Salmonella (Madan et al., 2009; Maseda et al., 2012;

Shen et al., 2014), we also observed Venus expression in

splenic CD138+ cells in Il10Venus/+ mice. However, amounts

were very low and the frequency of positive cells was unaf-

fected by EAE induction. By contrast, IL-10+ plasmablasts in

the dLNs were newly generated within extrafollicular foci,

implying negative feedback regulation to protect excessive

inflammation.

Our finding of severe EAE pathogenesis in the absence of

plasmablasts due to B-cell-specific deletion of Blimp1 or IRF4

supports the idea that plasmablasts possess regulatory activity

in vivo. This regulatory function is dependent on the dLNs and

independent of the spleen. On the other hand, results from adop-

tive transfer studies were interpreted to mean that splenic B

cells, especially the CD1dhiCD5+ B cell population, could sup-

press EAE through some unknown mechanism (Matsushita

et al., 2008). Although we also observed that adoptive transfer

of splenic B cells normalized EAE, plasmablast generation in

the dLNs was required. CD1dhiCD5+ B cells extensively differen-

tiate into plasmablasts in culture (Maseda et al., 2012) and

their adoptive transfer from mice lacking IL-21R, CD40, and

MHCII, which are indispensable for plasma cell differentiation

(McHeyzer-Williams et al., 2012), into Cd19�/� mice does not

resolve EAE development (Yoshizaki et al., 2012). Therefore,

this population might serve as plasmablast precursors in an

adoptive transfer setting.

The finding of in vitro BCR-dependent IL-10 production

specifically in Blimp1+ cells provides further evidence for the

importance of plasmablasts and can explain the previously

demonstrated need for TLR signaling for BCR-mediated IL-10

expression (Matsumoto et al., 2011). This idea is also supported

by the observation of impaired IL-10 secretion in the absence of

IRF4, which resulted in defective plasmablast differentiation (Fig-

ure S3A). Thus, IRF4 is required for IL-10 expression along with

plasmablast differentiation in vitro and in vivo. Importantly, TLR

and BCR signals induce the expression of IRF4 (De Silva et al.,

2012) and therefore operate upstream of both plasmablast dif-

ferentiation and IL-10 production. We detected deposition of

IRF4 at the CNS9 region upstream enhancer in the Il10 locus.

This is in agreement with published studies that demonstrated
unity 41, 1040–1051, December 18, 2014 ª2014 Elsevier Inc. 1047



A B

C

D E

F G H

I J

Figure 6. Human Plasmablasts Are IL-10-Producing B Cells

(A) Flow cytometry of B cells isolated from healthy blood donors and cultured with IL-2, IL-6 plus IFN-a (IL2, IL6, IFNa), and/or CpG for 96 hr. Four populations—

CD27�CD38� (red), CD27+CD38� (blue), CD27intCD38+ (green), and CD27hiCD38+ (purple) cells—are gated.

(B) ELISA of IL-10 secreted by B cells isolated from peripheral blood of healthy donors and cultured with IL-2, IL-6 plus IFN-a, and/or CpG for 96 hr.

(C) Flow cytometry of B cell populations indicated in the left panel.

(legend continued on next page)
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IRF4 binding to the same element in various types of cells (Cret-

ney et al., 2011; Lee et al., 2009; Li et al., 2012). NFAT bound to

the same region in Th2 cells, which was essential for IL-10 tran-

scription (Lee et al., 2009). Taking into account our previous

finding that B-cell-mediated IL-10 production requires NFAT

activation (Matsumoto et al., 2011), it seems likely that IRF4

serves as an NFAT transcription partner to produce IL-10 in

plasmablasts.

Unexpectedly, Blimp1-deficient B cells secreted IL-10 in our

in vitro experiments despite impaired CD138+ cell differentia-

tion. Considering that the initiation of plasma cell differentiation

takes place in vitro in the absence of Blimp1 (Kallies et al.,

2007), it seems possible that IL-10 production is initiated

already in the early preplasmablastic stage of plasma cell devel-

opment, which is independent of Blimp1 (Kallies et al., 2007).

However, we could detect little Venus-positive CD138� B cell

population in mice during EAE (data not shown). Given that

GFP+CD138� cells in Prdm1gfp/+ mice were effectively gener-

ated in vitro (Figure 4A), but not in vivo (Figure 1B), it seems

likely that no or few preplasmablasts as is detected in culture

exist in vivo.

We now have evidence that naive B-cell-derived plasma-

blasts represent the most significant IL-10 producers in hu-

mans. Although activation of human peripheral blood B cells

with CpG caused CD27hiCD38+ plasmablast generation, our

results establish that additional treatment with cytokines

including IL-2, IL-6, and, especially, IFN-a drove the differenti-

ation of CD27intCD38+ plasmablasts that predominantly secrete

IL-10. Given that IFN-a enhances CD38+ expression on naive B

cells (Giordani et al., 2009) and can induce plasma cell differen-

tiation (Jego et al., 2003), IFN receptor signals seem likely to be

key for IL-10-producing plasmablast generation. Indeed, pa-

tients with SLE have high serum IFN-a concentrations (Kim

et al., 1987) and increased CD27intCD38+ cells in peripheral

blood (Arce et al., 2001), suggesting that IL-10+ plasmablast

expansion might be the result of the inflammatory conditions.

Furthermore, the treatment with IFN-b, another type I IFN

approved for MS therapy, enhances B cell IL-10 secretion after

BCR and CD40 ligation (Ramgolam et al., 2011). Although the

precise mechanism by which IFN-b suppresses MS remains

unclear, one of the possible explanations is that IFN-b might

promote generation of IL-10-producing plasmablasts. Note-

worthy, in clinical trials, MS patients who received Atacicept,

a transmembrane activator and calcium-modulating cyclophi-

lin-ligand interactor (TACI)-Ig fusion protein to deplete anti-
(D) May-Grünwald-Giemsa staining of sorted B cell populations after culture with

represent 20 mm.

(E and F) ELISA of IgM (E) and IL-10 (F) secreted by the indicated B cell population

additional 24 hr.

(G) Flow cytometry of B cells cultured with IL-2, IL-6, IFN-a plus CpG for 96 hr an

Percentage of IL-10+ B cells and IL-10+CD27intCD38+ cells are shown.

(H) ELISPOT of IgM secreted by the indicated B cell populations after culture wi

(I) Flowcytometry of threeB cell populations freshly isolated fromperipheral bloodo

major populations such as CD24loCD27�CD38� (naive mature; red), CD24hiCD27�

peripheral blood B cells before culture are gated (left two panels). Percentages of C

(J) ELISA of IL-10 secreted by naive mature, naive immature, and memory B cells

for 96 hr.

Data shown are representative of three independent experiments. See also Figu

(B, E, F, H, and J) Data are presented as mean ± SD. *p < 0.05, **p < 0.001 (Stu

Imm
body-secreting cells, had exacerbated inflammatory symptoms

(Hartung and Kieseier, 2010). This would be consistent with an

inhibitory function for human plasmablasts. We have provided

evidence that IL-10-producing plasmablasts effectively stem

from naive immature B cells. This might support a recent study

that human IL-10-competent B cells were enriched in immature

CD24hiCD38hi B cells after culture with CD40 stimulation (Blair

et al., 2010). We found that memory B-cell-derived plasma-

blasts failed to secrete IL-10, suggesting that the immediate

precursor of developing plasmablasts would dictate the bal-

ance between cells that promote autoimmunity by antibody

production or have regulatory capacity that protects from overt

pathology.

In conclusion, our findings have identified plasmablasts in

the dLNs as the IL-10-producing B cells that suppress autoim-

munity. We also established a phenotype for human plasma-

blasts that predominantly secreted IL-10. Our study might

lead to better understanding of the nature of autoimmune dis-

eases and provide a basis for exploring new therapeutic

strategies.

EXPERIMENTAL PROCEDURES

Mice

C57BL/6 mice were purchased from CLEA Japan. Bcl6yfp/yfp (Kitano et al.,

2011), Il10Venus/+ (Atarashi et al., 2011), Irf4�/� (Mittrücker et al., 1997; Suzuki

et al., 2004), Mb1Cre/+ (Hobeika et al., 2006), mMT (Kitamura et al., 1991), and

Prdm1gfp/+ (Kallies et al., 2004) mice have been described previously. Il10�/�,
Prdm1f/f,Sell�/�, and TCRMOG transgenicmicewere purchased from the Jack-

son Laboratory. We generated Prdm1f/fMb1Cre/+ mice by crossing of Prdm1f/f

mice withMb1Cre/+ mice. Mice were bred andmaintained under specific-path-

ogen-free conditions and used at 6 to 12 weeks of age. Animal care and exper-

iments were conducted according to the guidelines established by the animal

committee of Osaka University.

Generation of Mixed Bone Marrow Chimeras

Mixed bone marrow chimeras were produced as described previously (Filla-

treau et al., 2002). In brief, recipient wild-type mice received 800 cGy of

X-ray irradiation. One day later, the recipients were reconstituted with a mixed

inoculum of 80% mMT bone marrow cells supplemented with 20% bone

marrow cells from Irf4�/� or Sell�/� mice. Control groups received 80% mMT

and 20% wild-type bone marrow cells or 80% wild-type and 20% bone

marrow cells from Irf4�/� or Sell�/� mice. Chimeric mice were left to fully

reconstitute their lymphoid system for at least 12 weeks before EAE induction.

Induction and Assessment of EAE

EAE was induced by subcutaneous immunization with 200 mg of MOG35-55

(MBL) emulsified in complete Freund’s adjuvant (CFA) containing 500 mg of
IL-2, IL-6, IFN-a plus CpG for 96 hr. Original magnification, 3400; scale bars

s after culture with IL-2, IL-6, IFN-a plus CpG for 96 hr and then cultured for an

d labeled with IL-10 capture and detection antibodies to detect IL-10+ B cells.

th IL-2, IL-6, IFN-a plus CpG for 96 hr followed by an additional 24 hr culture.

f healthy donors and then culturedwith IL-2, IL-6, IFN-aplusCpG for 96 hr. Three

CD38lo (naive immature; pink), and CD24hiCD27+CD38� (memory; blue) cells in

D27intCD38+ andCD27hiCD38+ cells after culture are shown (right three panels).

isolated from healthy blood donors and cultured with IL-2, IL-6, IFN-a plus CpG

re S6.

dent’s t test).
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heat-killed mycobacterium tuberculosis H37RA (Difco). Mice also received

200 ng of pertussis toxin (List Biological Laboratories) i.p. in 0.2 ml of PBS

on the same day and 2 days later. Clinical signs of EAE were assessed daily

with a 0–6 scoring system (0, no signs; 1, tail limpness; 2, impaired righting re-

flex; 3, hind limb weakness; 4, hind limb paralysis; 5, hind limb paralysis with

fore limb weakness; 6, death).

Isolation of Mouse B Cells and Adoptive Transfer

For B cell isolation, splenic B cells were purified by negative selection of CD43+

cells with anti-CD43 magnetic beads (Miltenyi Biotec). The enriched B cell

population was >95% positive for B220 staining. The B cells (2 3 107 cells)

from spleen of Mb1Cre/+ and Prdm1f/fMb1Cre/+ mice 28 days after MOG35-55

immunization or wild-type and Sell�/� mice were transferred intravenously

into mMT mice 24 hr before EAE induction.

Isolation and Stimulation of Human B Cells from Healthy Blood

Donors

Mononuclear cells were isolated from peripheral blood of healthy donors by

centrifugation over Ficoll-Paque PLUS (GE Healthcare). B cells were enriched

by positive selection of CD19+ cells with anti-human CD19 magnetic beads

(Miltenyi Biotec) and were routinely >95% positive for CD19 staining. The pu-

rified B cells (53 105 cells/ml) were cultured for 96 hr with IL-2 (10 ng/ml; R&D),

IL-6 (10 ng/ml; R&D), and CpG ODN 2006 (CpG; 1 mg/ml; InvivoGen) in the

presence of IFN-a (1,000 U/ml; PBL Biomedical Laboratories) or IFN-b

(1,000 U/ml; PBL Biomedical Laboratories). This study was approved by the

ethics committees of Research Institute for Microbial Diseases, Osaka Univer-

sity. Healthy volunteers were recruited after obtaining informed consent.

ELISA and ELISPOT

MOG-specific IgG in serum was measured by ELISA with a plate coated with

10 mg/ml MOG35-55 and then detected with goat anti-mouse IgG and HRP-

conjugated anti-goat IgG Abs (SouthernBiotech). For measurement of cyto-

kine release by autoantigen-reactive lymphocytes, single-cell suspensions of

the dLNs prepared from mice 14 days after EAE induction were cultured

with a range of MOG35-55 doses for 48 hr. For measurement of IL-10

production by mouse B cells, purified B cells (1 3 106 cells/ml) were cultured

for 48 hr with 10 mg/ml of LPS (Sigma-Aldrich) and then stimulated with

10 mg/ml of anti-mouse IgM F(ab)’2 (Jackson Immunoresearch). In some ex-

periments, CD19+CD138� and CD138+CD44hi cells harvested from dLNs of

wild-type mice 14 days after EAE induction were stimulated with 100 ng/ml

phorbol 12-myristate 13-acetate (PMA; Sigma-Aldrich) plus 1 mM ionomycin

(Sigma-Aldrich) for 5 or 24 hr. For measurement of IL-10 and IgM production

by human peripheral blood B cells, purified B cells (5 3 105 cells/ml) were

cultured for 96 hr with IL-2, IL-6, IFN-a, and CpG. IFN-g, IgM, IL-4, IL-6,

IL-10, IL-13, IL-17a, IL-27, IL-35, and TGF-b1 in the culture medium were

detected by ELISA and Bio-Plex suspension assay according to the manufac-

turer’s protocol (Biolegend, BIO-RAD, Bethyl Laboratories, or R&D). IgM

secretion by human B cells was detected by ELISPOT according to the

manufacturer’s protocol (R&D).

Statistical Analysis

We performed statistical evaluation with Prism software (GraphPad). A two-

tailed, unpaired Student’s t test was applied for statistical comparison of two

groups. In case of unequal variance, t test with Welch’s correction was used.

Comparisons of two nonparametric data sets were done by theMann-Whitney

U test. A p value of less than 0.05 was considered statistically significant.
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Sweenie, C.H., Hao, Y., Freitas, A.A., Steinhoff, U., Anderton, S.M., and

Fillatreau, S. (2008). TLR-activated B cells suppress T cell-mediated autoim-

munity. J. Immunol. 180, 4763–4773.

Lee, C.G., Kang, K.H., So, J.S., Kwon, H.K., Son, J.S., Song, M.K., Sahoo, A.,

Yi, H.J., Hwang, K.C., Matsuyama, T., et al. (2009). A distal cis-regulatory

element, CNS-9, controls NFAT1 and IRF4-mediated IL-10 gene activation

in T helper cells. Mol. Immunol. 46, 613–621.

Li, P., Spolski, R., Liao, W., Wang, L., Murphy, T.L., Murphy, K.M., and

Leonard, W.J. (2012). BATF-JUN is critical for IRF4-mediated transcription in

T cells. Nature 490, 543–546.

Madan, R., Demircik, F., Surianarayanan, S., Allen, J.L., Divanovic, S.,

Trompette, A., Yogev, N., Gu, Y., Khodoun, M., Hildeman, D., et al. (2009).

Nonredundant roles for B cell-derived IL-10 in immune counter-regulation.

J. Immunol. 183, 2312–2320.

Maseda, D., Smith, S.H., DiLillo, D.J., Bryant, J.M., Candando, K.M., Weaver,

C.T., and Tedder, T.F. (2012). Regulatory B10 cells differentiate into antibody-

secreting cells after transient IL-10 production in vivo. J. Immunol. 188, 1036–

1048.

Matsumoto, M., Fujii, Y., Baba, A., Hikida, M., Kurosaki, T., and Baba, Y.

(2011). The calcium sensors STIM1 and STIM2 control B cell regulatory func-

tion through interleukin-10 production. Immunity 34, 703–714.
Imm
Matsushita, T., Fujimoto, M., Hasegawa, M., Komura, K., Takehara, K.,

Tedder, T.F., and Sato, S. (2006). Inhibitory role of CD19 in the progression

of experimental autoimmune encephalomyelitis by regulating cytokine

response. Am. J. Pathol. 168, 812–821.

Matsushita, T., Yanaba, K., Bouaziz, J.D., Fujimoto, M., and Tedder, T.F.

(2008). Regulatory B cells inhibit EAE initiation in mice while other B cells pro-

mote disease progression. J. Clin. Invest. 118, 3420–3430.

Mauri, C. (2010). Regulation of immunity and autoimmunity by B cells. Curr.

Opin. Immunol. 22, 761–767.

Mauri, C., and Bosma, A. (2012). Immune regulatory function of B cells. Annu.

Rev. Immunol. 30, 221–241.

Mauri, C., Gray, D., Mushtaq, N., and Londei, M. (2003). Prevention of arthritis

by interleukin 10-producing B cells. J. Exp. Med. 197, 489–501.

McHeyzer-Williams, M., Okitsu, S., Wang, N., and McHeyzer-Williams, L.

(2012). Molecular programming of B cell memory. Nat. Rev. Immunol. 12,

24–34.
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