92 research outputs found

    Suprarenal fixation of endovascular aortic stent grafts: assessment of medium-term to long-term renal function by analysis of juxtarenal stent morphology.

    Get PDF
    Objective: The effect of supra-renal stent fixation during endovascular aortic aneurysm repair (EVAR) on renal function remains unclear. Using a unique validated 3D intraluminal imaging technique, we analysed the effect of suprarenal stent position relative to renal artery orifices and its medium to long term effects on renal function.Methods: Thirty-four consecutive patients from a single institution were studied following EVAR using the Zenith endograft system from September 1999 to March 2002. The precise locations of the uncovered supra-renal stent struts were assessed by a virtual endoscopic imaging technique. Anatomical and quantitative categorisation of patients was made according to the configuration of uncovered stent struts across the renal artery ostia (RAO). The anatomical subgroups were defined as struts located centrally or peripherally across both RAO. The quantitative subgroups were defined as RAO crossed by multiple struts, a solitary strut or no struts. The subgroups were compared for their renal function as assessed by temporal measurements of serum creatinine concentration and creatinine clearance, and renal parenchymal perfusion defects as assessed using contrast-enhanced computerised tomography (CT).Results: Mean follow-up was 52.7 months. Separate subgroup analysis for both anatomical and quantitative configurations did not demonstrate any significant difference in renal function between the different strut permutations (p>0.05). Follow-up imaging confirmed one case of renal infarction secondary to an occluded accessory renal artery, although, this patient had normal creatinine levels.Conclusion: RAO coverage by supra-renal uncovered stents does not appear to have a significant effect on renal function as evaluated by creatinine measurements in patients with normal pre-operative renal function

    Adverse events in people taking macrolide antibiotics versus placebo for any indication

    Get PDF
    BACKGROUND: Macrolide antibiotics (macrolides) are among the most commonly prescribed antibiotics worldwide and are used for a wide range of infections. However, macrolides also expose people to the risk of adverse events. The current understanding of adverse events is mostly derived from observational studies, which are subject to bias because it is hard to distinguish events caused by antibiotics from events caused by the diseases being treated. Because adverse events are treatment-specific, rather than disease-specific, it is possible to increase the number of adverse events available for analysis by combining randomised controlled trials (RCTs) of the same treatment across different diseases. OBJECTIVES:To quantify the incidences of reported adverse events in people taking macrolide antibiotics compared to placebo for any indication. SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL), which includes the Cochrane Acute Respiratory Infections Group Specialised Register (2018, Issue 4); MEDLINE (Ovid, from 1946 to 8 May 2018); Embase (from 2010 to 8 May 2018); CINAHL (from 1981 to 8 May 2018); LILACS (from 1982 to 8 May 2018); and Web of Science (from 1955 to 8 May 2018). We searched clinical trial registries for current and completed trials (9 May 2018) and checked the reference lists of included studies and of previous Cochrane Reviews on macrolides. SELECTION CRITERIA: We included RCTs that compared a macrolide antibiotic to placebo for any indication. We included trials using any of the four most commonly used macrolide antibiotics: azithromycin, clarithromycin, erythromycin, or roxithromycin. Macrolides could be administered by any route. Concomitant medications were permitted provided they were equally available to both treatment and comparison groups. DATA COLLECTION AND ANALYSIS: Two review authors independently extracted and collected data. We assessed the risk of bias of all included studies and the quality of evidence for each outcome of interest. We analysed specific adverse events, deaths, and subsequent carriage of macrolide-resistant bacteria separately. The study participant was the unit of analysis for each adverse event. Any specific adverse events that occurred in 5% or more of any group were reported. We undertook a meta-analysis when three or more included studies reported a specific adverse event. MAIN RESULTS: We included 183 studies with a total of 252,886 participants (range 40 to 190,238). The indications for macrolide antibiotics varied greatly, with most studies using macrolides for the treatment or prevention of either acute respiratory tract infections, cardiovascular diseases, chronic respiratory diseases, gastrointestinal conditions, or urogynaecological problems. Most trials were conducted in secondary care settings. Azithromycin and erythromycin were more commonly studied than clarithromycin and roxithromycin.Most studies (89%) reported some adverse events or at least stated that no adverse events were observed.Gastrointestinal adverse events were the most commonly reported type of adverse event. Compared to placebo, macrolides caused more diarrhoea (odds ratio (OR) 1.70, 95% confidence interval (CI) 1.34 to 2.16; low-quality evidence); more abdominal pain (OR 1.66, 95% CI 1.22 to 2.26; low-quality evidence); and more nausea (OR 1.61, 95% CI 1.37 to 1.90; moderate-quality evidence). Vomiting (OR 1.27, 95% CI 1.04 to 1.56; moderate-quality evidence) and gastrointestinal disorders not otherwise specified (NOS) (OR 2.16, 95% CI 1.56 to 3.00; moderate-quality evidence) were also reported more often in participants taking macrolides compared to placebo.The number of additional people (absolute difference in risk) who experienced adverse events from macrolides was: gastrointestinal disorders NOS 85/1000; diarrhoea 72/1000; abdominal pain 62/1000; nausea 47/1000; and vomiting 23/1000.The number needed to treat for an additional harmful outcome (NNTH) ranged from 12 (95% CI 8 to 23) for gastrointestinal disorders NOS to 17 (9 to 47) for abdominal pain; 19 (12 to 33) for diarrhoea; 19 (13 to 30) for nausea; and 45 (22 to 295) for vomiting.There was no clear consistent difference in gastrointestinal adverse events between different types of macrolides or route of administration.Taste disturbances were reported more often by participants taking macrolide antibiotics, although there were wide confidence intervals and moderate heterogeneity (OR 4.95, 95% CI 1.64 to 14.93; Iand#178; = 46%; low-quality evidence).Compared with participants taking placebo, those taking macrolides experienced hearing loss more often, however only four studies reported this outcome (OR 1.30, 95% CI 1.00 to 1.70; Iand#178; = 0%; low-quality evidence).We did not find any evidence that macrolides caused more cardiac disorders (OR 0.87, 95% CI 0.54 to 1.40; very low-quality evidence); hepatobiliary disorders (OR 1.04, 95% CI 0.27 to 4.09; very low-quality evidence); or changes in liver enzymes (OR 1.56, 95% CI 0.73 to 3.37; very low-quality evidence) compared to placebo.We did not find any evidence that appetite loss, dizziness, headache, respiratory symptoms, blood infections, skin and soft tissue infections, itching, or rashes were reported more often by participants treated with macrolides compared to placebo.Macrolides caused less cough (OR 0.57, 95% CI 0.40 to 0.80; moderate-quality evidence) and fewer respiratory tract infections (OR 0.70, 95% CI 0.62 to 0.80; moderate-quality evidence) compared to placebo, probably because these are not adverse events, but rather characteristics of the indications for the antibiotics. Less fever (OR 0.73, 95% 0.54 to 1.00; moderate-quality evidence) was also reported by participants taking macrolides compared to placebo, although these findings were non-significant.There was no increase in mortality in participants taking macrolides compared with placebo (OR 0.96, 95% 0.87 to 1.06; Iand#178; = 11%; low-quality evidence).Only 24 studies (13%) provided useful data on macrolide-resistant bacteria. Macrolide-resistant bacteria were more commonly identified among participants immediately after exposure to the antibiotic. However, differences in resistance thereafter were inconsistent.Pharmaceutical companies supplied the trial medication or funding, or both, for 91 trials. AUTHORS' CONCLUSIONS: The macrolides as a group clearly increased rates of gastrointestinal adverse events. Most trials made at least some statement about adverse events, such as "none were observed". However, few trials clearly listed adverse events as outcomes, reported on the methods used for eliciting adverse events, or even detailed the numbers of people who experienced adverse events in both the intervention and placebo group. This was especially true for the adverse event of bacterial resistance.</p

    The efficacy and safety of prokinetic agents in critically ill patients receiving enteral nutrition: a systematic review and meta-analysis of randomized trials.

    Get PDF
    BACKGROUND: Intolerance to enteral nutrition is common in critically ill adults, and may result in significant morbidity including ileus, abdominal distension, vomiting and potential aspiration events. Prokinetic agents are prescribed to improve gastric emptying. However, the efficacy and safety of these agents in critically ill patients is not well-defined. Therefore, we conducted a systematic review and meta-analysis to determine the efficacy and safety of prokinetic agents in critically ill patients. METHODS: We searched MEDLINE, EMBASE, and Cochrane Library from inception up to January 2016. Eligible studies included randomized controlled trials (RCTs) of critically ill adults assigned to receive a prokinetic agent or placebo, and that reported relevant clinical outcomes. Two independent reviewers screened potentially eligible articles, selected eligible studies, and abstracted pertinent data. We calculated pooled relative risk (RR) for dichotomous outcomes and mean difference for continuous outcomes, with the corresponding 95 % confidence interval (CI). We assessed risk of bias using Cochrane risk of bias tool, and the quality of evidence using grading of recommendations assessment, development, and evaluation (GRADE) methodology. RESULTS: Thirteen RCTs (enrolling 1341 patients) met our inclusion criteria. Prokinetic agents significantly reduced feeding intolerance (RR 0.73, 95 % CI 0.55, 0.97; P = 0.03; moderate certainty), which translated to 17.3 % (95 % CI 5, 26.8 %) absolute reduction in feeding intolerance. Prokinetics also reduced the risk of developing high gastric residual volumes (RR 0.69; 95 % CI 0.52, 0.91; P = 0.009; moderate quality) and increased the success of post-pyloric feeding tube placement (RR 1.60, 95 % CI 1.17, 2.21; P = 0.004; moderate quality). There was no significant improvement in the risk of vomiting, diarrhea, intensive care unit (ICU) length of stay or mortality. Prokinetic agents also did not significantly increase the rate of diarrhea. CONCLUSION: There is moderate-quality evidence that prokinetic agents reduce feeding intolerance in critically ill patients compared to placebo or no intervention. However, the impact on other clinical outcomes such as pneumonia, mortality, and ICU length of stay is unclear

    Definitions, pathophysiology, and epidemiology of acute cholangitis and cholecystitis: Tokyo Guidelines

    Get PDF
    This article discusses the definitions, pathophysiology, and epidemiology of acute cholangitis and cholecystitis. Acute cholangitis and cholecystitis mostly originate from stones in the bile ducts and gallbladder. Acute cholecystitis also has other causes, such as ischemia; chemicals that enter biliary secretions; motility disorders associated with drugs; infections with microorganisms, protozoa, and parasites; collagen disease; and allergic reactions. Acute acalculous cholecystitis is associated with a recent operation, trauma, burns, multisystem organ failure, and parenteral nutrition. Factors associated with the onset of cholelithiasis include obesity, age, and drugs such as oral contraceptives. The reported mortality of less than 10% for acute cholecystitis gives an impression that it is not a fatal disease, except for the elderly and/or patients with acalculous disease. However, there are reports of high mortality for cholangitis, although the mortality differs greatly depending on the year of the report and the severity of the disease. Even reports published in and after the 1980s indicate high mortality, ranging from 10% to 30% in the patients, with multiorgan failure as a major cause of death. Because many of the reports on acute cholecystitis and cholangitis use different standards, comparisons are difficult. Variations in treatment and risk factors influencing the mortality rates indicate the necessity for standardized diagnostic, treatment, and severity assessment criteria

    Gallbaldder perforation causing a subcutaneous abscess

    No full text

    Acute acalculous cholecystitis after laparoscopic appendectomy in a young healthy patient: report of a case

    No full text
    corecore