102 research outputs found

    A lncRNA fine tunes the dynamics of a cell state transition involving Lin28, let-7 and de novo DNA methylation

    Get PDF
    Execution of pluripotency requires progression from the naive status represented by mouse embryonic stem cells (ESCs) to a state capacitated for lineage specification. This transition is coordinated at multiple levels. Non-coding RNAs may contribute to this regulatory orchestra. We identified a rodent-specific long non-coding RNA (lncRNA) linc1281, hereafter Ephemeron (Eprn), that modulates the dynamics of exit from naive pluripotency. Eprn deletion delays the extinction of ESC identity, an effect associated with perduring Nanog expression. In the absence of Eprn, Lin28a expression is reduced which results in persistence of let-7 microRNAs, and the up-regulation of de novo methyltransferases Dnmt3a/b is delayed. Dnmt3a/b deletion retards ES cell transition, correlating with delayed Nanog promoter methylation and phenocopying loss of Eprn or Lin28a. The connection from lncRNA to miRNA and DNA methylation facilitates the acute extinction of naive pluripotency, a pre-requisite for rapid progression from preimplantation epiblast to gastrulation in rodents. Eprn illustrates how lncRNAs may introduce species-specific network modulations

    Carglumic acid enhances rapid ammonia detoxification in classical organic acidurias with a favourable risk-benefit profile: A retrospective observational study

    Get PDF
    BACKGROUND: Isovaleric aciduria (IVA), propionic aciduria (PA) and methylmalonic aciduria (MMA) are inherited organic acidurias (OAs) in which impaired organic acid metabolism induces hyperammonaemia arising partly from secondary deficiency of N-acetylglutamate (NAG) synthase. Rapid reduction in plasma ammonia is required to prevent neurological complications. This retrospective, multicentre, open-label, uncontrolled, phase IIIb study evaluated the efficacy and safety of carglumic acid, a synthetic structural analogue of NAG, for treating hyperammonaemia during OA decompensation. METHODS: Eligible patients had confirmed OA and hyperammonaemia (plasma NH3 > 60 μmol/L) in ≥1 decompensation episode treated with carglumic acid (dose discretionary, mean (SD) first dose 96.3 (73.8) mg/kg). The primary outcome was change in plasma ammonia from baseline to endpoint (last available ammonia measurement at ≤18 hours after the last carglumic acid administration, or on Day 15) for each episode. Secondary outcomes included clinical response and safety. RESULTS: The efficacy population (received ≥1 dose of study drug and had post-baseline measurements) comprised 41 patients (MMA: 21, PA: 16, IVA: 4) with 48 decompensation episodes (MMA: 25, PA: 19, IVA: 4). Mean baseline plasma ammonia concentration was 468.3 (±365.3) μmol/L in neonates (29 episodes) and 171.3 (±75.7) μmol/L in non-neonates (19 episodes). At endpoint the mean plasma NH3 concentration was 60.7 (±36.5) μmol/L in neonates and 55.2 (±21.8) μmol/L in non-neonates. Median time to normalise ammonaemia was 38.4 hours in neonates vs 28.3 hours in non-neonates and was similar between OA subgroups (MMA: 37.5 hours, PA: 36.0 hours, IVA: 40.5 hours). Median time to ammonia normalisation was 1.5 and 1.6 days in patients receiving and not receiving concomitant scavenger therapy, respectively. Although patients receiving carglumic acid with scavengers had a greater reduction in plasma ammonia, the endpoint ammonia levels were similar with or without scavenger therapy. Clinical symptoms improved with therapy. Twenty-five of 57 patients in the safety population (67 episodes) experienced AEs, most of which were not drug-related. Overall, carglumic acid seems to have a good safety profile for treating hyperammonaemia during OA decompensation. CONCLUSION: Carglumic acid when used with or without ammonia scavengers, is an effective treatment for restoration of normal plasma ammonia concentrations in hyperammonaemic episodes in OA patients

    Targeting gut dysbiosis against inflammation and impaired autophagy in Duchenne muscular dystrophy

    Get PDF
    Nothing is known about the potential implication of gut microbiota in skeletal muscle disorders. Here, we provide evidence that fecal microbiota composition along with circulating levels of short-chain fatty acids (SCFAs) and related metabolites are altered in the mdx mouse model of Duchenne muscular dystrophy (DMD) compared with healthy controls. Supplementation with sodium butyrate (NaB) in mdx mice rescued muscle strength and autophagy, and prevented inflammation associated with excessive endocannabinoid signaling at CB1 receptors to the same extent as deflazacort (DFZ), the standard palliative care for DMD. In LPS-stimulated C2C12 myoblasts, NaB reduces inflammation, promotes autophagy, and prevents dysregulation of microRNAs targeting the endocannabinoid CB1 receptor gene, in a manner depending on the activation of GPR109A and PPARγ receptors. In sum, we propose a novel disease-modifying approach in DMD that may have benefits also in other muscular dystrophies

    Shaking table tests and numerical analyses on a scaled dry-joint arch undergoing windowed sine pulses

    Get PDF
    The damages occurred during recent seismic events have emphasised the vulnerability of vaulted masonry structures, one of the most representative elements of worldwide cultural heritage. Although a certain consensus has been reached regarding the static behaviour of masonry arches, still more efforts are requested to investigate their dynamic behaviour. In this regard, the present paper aims to investigate the performance of a scaled dry-joint arch undergoing windowed sine pulses. A feature tracking based measuring technique was employed to evaluate the displacement of selected points, shading light on the failure mechanisms and gathering data for the calibration of the numerical model. This was built according to a micro-modelling approach of the finite element method, with voussoirs assumed very stiff and friction interface elements. Comparisons with existing literature are also stressed, together with comments about scale effects.This work was partly financed by FEDER funds through the Competitivity Factors Operational Programme-COMPETE and by national funds through FCT-Foundation for Science and Technology within the scope of the Project POCI-01-0145-FEDER-007633.info:eu-repo/semantics/publishedVersio

    TRAF4 is a novel phosphoinositide-binding protein modulating tight junctions and favoring cell migration

    Get PDF
    Tumor necrosis factor (TNF) receptor-associated factor 4 (TRAF4) is frequently overexpressed in carcinomas, suggesting a specific role in cancer. Although TRAF4 protein is predominantly found at tight junctions (TJs) in normal mammary epithelial cells (MECs), it accumulates in the cytoplasm of malignant MECs. How TRAF4 is recruited and functions at TJs is unclear. Here we show that TRAF4 possesses a novel phosphoinositide (PIP)-binding domain crucial for its recruitment to TJs. Of interest, this property is shared by the other members of the TRAF protein family. Indeed, the TRAF domain of all TRAF proteins (TRAF1 to TRAF6) is a bona fide PIP-binding domain. Molecular and structural analyses revealed that the TRAF domain of TRAF4 exists as a trimer that binds up to three lipids using basic residues exposed at its surface. Cellular studies indicated that TRAF4 acts as a negative regulator of TJ and increases cell migration. These functions are dependent from its ability to interact with PIPs. Our results suggest that TRAF4 overexpression might contribute to breast cancer progression by destabilizing TJs and favoring cell migration

    A large topographic feature on the surface of the trans-Neptunian object (307261) 2002 MS4_4 measured from stellar occultations

    Full text link
    This work aims at constraining the size, shape, and geometric albedo of the dwarf planet candidate 2002 MS4 through the analysis of nine stellar occultation events. Using multichord detection, we also studied the object's topography by analyzing the obtained limb and the residuals between observed chords and the best-fitted ellipse. We predicted and organized the observational campaigns of nine stellar occultations by 2002 MS4 between 2019 and 2022, resulting in two single-chord events, four double-chord detections, and three events with three to up to sixty-one positive chords. Using 13 selected chords from the 8 August 2020 event, we determined the global elliptical limb of 2002 MS4. The best-fitted ellipse, combined with the object's rotational information from the literature, constrains the object's size, shape, and albedo. Additionally, we developed a new method to characterize topography features on the object's limb. The global limb has a semi-major axis of 412 ±\pm 10 km, a semi-minor axis of 385 ±\pm 17 km, and the position angle of the minor axis is 121 ^\circ ±\pm 16^\circ. From this instantaneous limb, we obtained 2002 MS4's geometric albedo and the projected area-equivalent diameter. Significant deviations from the fitted ellipse in the northernmost limb are detected from multiple sites highlighting three distinct topographic features: one 11 km depth depression followed by a 255+4^{+4}_{-5} km height elevation next to a crater-like depression with an extension of 322 ±\pm 39 km and 45.1 ±\pm 1.5 km deep. Our results present an object that is \approx138 km smaller in diameter than derived from thermal data, possibly indicating the presence of a so-far unknown satellite. However, within the error bars, the geometric albedo in the V-band agrees with the results published in the literature, even with the radiometric-derived albedo

    Reconstruction of metabolic pathways for the cattle genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metabolic reconstruction of microbial, plant and animal genomes is a necessary step toward understanding the evolutionary origins of metabolism and species-specific adaptive traits. The aims of this study were to reconstruct conserved metabolic pathways in the cattle genome and to identify metabolic pathways with missing genes and proteins. The MetaCyc database and PathwayTools software suite were chosen for this work because they are widely used and easy to implement.</p> <p>Results</p> <p>An amalgamated cattle genome database was created using the NCBI and Ensembl cattle genome databases (based on build 3.1) as data sources. PathwayTools was used to create a cattle-specific pathway genome database, which was followed by comprehensive manual curation for the reconstruction of metabolic pathways. The curated database, CattleCyc 1.0, consists of 217 metabolic pathways. A total of 64 mammalian-specific metabolic pathways were modified from the reference pathways in MetaCyc, and two pathways previously identified but missing from MetaCyc were added. Comparative analysis of metabolic pathways revealed the absence of mammalian genes for 22 metabolic enzymes whose activity was reported in the literature. We also identified six human metabolic protein-coding genes for which the cattle ortholog is missing from the sequence assembly.</p> <p>Conclusion</p> <p>CattleCyc is a powerful tool for understanding the biology of ruminants and other cetartiodactyl species. In addition, the approach used to develop CattleCyc provides a framework for the metabolic reconstruction of other newly sequenced mammalian genomes. It is clear that metabolic pathway analysis strongly reflects the quality of the underlying genome annotations. Thus, having well-annotated genomes from many mammalian species hosted in BioCyc will facilitate the comparative analysis of metabolic pathways among different species and a systems approach to comparative physiology.</p
    corecore