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Abstract: The damages occurred during recent seismic events have emphasised the vulnerability of vaulted 

masonry structures, one of the most representative elements of worldwide cultural heritage. Although a certain 

consensus has been reached regarding the static behaviour of masonry arches, still more efforts are requested to 

investigate their dynamic behaviour. In this regard, the present paper aims to investigate the performance of a 

scaled dry-joint arch undergoing windowed sine pulses. A feature tracking based measuring technique was 

employed to evaluate the displacement of selected points, shading light on the failure mechanisms and gathering 

data for the calibration of the numerical model. This was built according to a micro-modelling approach of the 

finite element method, with voussoirs assumed very stiff and friction interface elements. Comparisons with 

existing literature are also stressed, together with comments about scale effects. 
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1. Introduction 

Unreinforced masonry vaults are diffused all over the world with more than six thousand years of history, with a 

religious and political symbolism that have likewise developed over time. Whereas, on the one hand, this long-

lasting history clearly proves the adequacy of the past design processes to withstand gravitational loads, on the 

other hand, vaulted structures seem severely threatened by seismic events. The systematic observation of post-

earthquake damages performed by the Italian Civil Defence Agency (National Civil Protection Service 2013) 

underlined the seismic vulnerability of vaulted structures and the consequent loss in terms of cultural, emotional 

and economic values, in addition to human lives. 

Despite the great deal of research devoted to the static analysis of vaulted structures, studies on their 

dynamic behaviour are still rather limited, mainly focusing on rigid bodies dynamics (masonry elements as an 

assembly of dry-joint units). Starting with the pioneering work of Housner (1963), it is only thirty years later that 

the study of the rocking masonry arch was tackled by Oppenheim (1992). Under horizontal pulse excitation, the 

arch was considered as a rigid body four-link SDOF (single degree of freedom) mechanism, where the location of 

the four hinges (arranged in an alternating manner between intrados and extrados) was suitably assessed through 

a static equivalent analysis (Fig. 1a). Considering the nonlinear equation of motion for the SDOF mechanism, two 

cases were contemplated: 1) the arch fails after large rotations of the blocks or 2) the arch is safe if it is able to 

return to the rest position (Fig. 1b), that is, without investigating the post-impact behaviour (Fig. 1c). The same 

approach was followed by Clemente (1998) regarding the performance of stone arches under free vibrations 

(following an initial displacement), rectangular pulse and sinusoidal base acceleration. 

   

a) b)  c) 

Fig. 1 The SDOF mechanism for an arch under base excitation: a) first half cycle, b) recovering and impact, c) 

second half cycle 

Only recently DeJong and Ochsendorf (2006) stressed the importance of the post-impact behaviour. 

According to Discrete Element Method (DEM) analyses, the authors observed how the arch failure after the impact 

occurrence (Fig. 1c) represents the most critical configuration. Paralleling the results of Zhang and Makris (2001), 

DeJong and Ochsendorf (2006) referred to this type of failure as Mode 2, in contrast with Mode 1, that is, without 
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any impact. Zhang and Makris (2001) underlined also how rigid bodies are more vulnerable to a one-sine than a 

one-cosine impulse. 

With the aim of improving Oppenheim’s work, De Lorenzis et al. (2007) proposed a simplified analytical 

formulation to account for the behaviour of the arch after the impact, which makes the hinge location to flip in the 

symmetric position with respect the vertical axis of symmetry of the undeformed arch. The initial conditions for 

the post-impact behaviour (five unknowns) were calculated considering the coefficient of restitution that relates 

the rotational velocity (and, analogously, the kinetic energy) pre- and post-impact. This coefficient was found to 

be dependent only on the geometry of the arch and the number of voussoirs, and not on scale. Finally, the rocking 

behaviour was assumed to keep going back and forth until failure occurrence or until the arch returns to the rest 

position. Compared with DEM analyses and laboratory evidences (DeJong and Ochsendorf 2006; DeJong et al. 

2008), the model proposed by De Lorenzis et al. (2007) appreciably matched the dynamic behaviour of the arch. 

However, the assumption of fixed hinge location (pre- and post-impact) and the neglect of sliding between blocks 

are limitations of the model. 

On the basis of the previous work, considering the response of the analytical model for a range of impulse 

accelerations and periods, DeJong et al. (2008) proposed a regression equation fitted on the failure cases for a one-

cycle sine pulse. The numerical results were compared with shaking table tests on two scaled dry-joint arches built 

with autoclaved aerated concrete blocks. In particular, beside a tilting test, five time histories of real earthquakes 

and harmonic signals were implemented. Moreover, considering the analytical description of the dynamic 

behaviour of the arch, DeJong and Dimitrakopoulos (2014) proposed a methodology to derive approximate 

equivalence between the single rocking block and arch rocking mechanisms through local linearization of the 

equations of motion. In particular, the authors underlined the analogy between the arch and the asymmetric rocking 

frame, both of them activating a three-block mechanism. 

Regarding pure numerical analyses, beside limit analysis calculation (Clemente 1997; De Luca et al. 2004; 

Drosopoulos et al. 2006; Monti et al. 2013; Dimitri and Tornabene 2015; da Porto et al. 2016; Tecchio et al. 2016), 

as already stressed, DEM seems well suited for the analysis of historical stone masonry structures under 

earthquakes. Variations of the method are usually designated by UDEC, NSCD and DDA, Universal Distinct 

Element Code, Non-Smooth Contact Dynamics, and Discrete Deformation Analysis, respectively. The principal 

contributions for the analysis of arched structures are: UDEC (Lemos 1998; Tóth et al. 2009; Dimitri et al. 2011; 

Dimitri and Tornabene 2015); NSCD (Rafiee et al. 2008; Albuerne et al. 2013; Rafiee and Vinches 2013; Lancioni 



 

et al. 2016); DDA (Pérez-Aparicio et al. 2013). Thavalingam et al. (2001), instead, performed a comparison 

between DDA, DEM based Particle Flow Code and a non-linear finite element (FEM). 

Considering FEM methods, by means of fibre beam approach, De Santis and de Felice (2014) performed 

nonlinear static and dynamic analyses on masonry arches of different geometrical and mechanical properties. Also 

Pelà et al. (2009) performed nonlinear static analyses, calibrating the mechanical parameters and the restraint 

conditions according to recorded vibration frequencies and modal shapes, together with the Drucker-Prager failure 

criterion. Milani and Lourenço (2012) proposed a 3D numerical model for the analysis of masonry bridges 

interacting with the backfill. Compared with DEM and the Applied Element Method AEM, the non-commercial 

software developed by the authors showed a better description of the arch behaviour. 

On the other hand, many researchers have recently performed dynamic tests on arched structures. Calderini 

et al. (2015) investigated the behaviour of an arch-pillars system pre- and post-strengthening by the use of tie-rods. 

Giamundo and co-workers (2015; 2016) carried out an experimental campaign regarding the performance of a 

barrel vault before and after the application of an inorganic matrix composite grid reinforcement. 

From the above considerations, the present contribution is aimed at investigating in detail the behaviour of 

a masonry arch to simple pulses, to which rigid block structures result more vulnerable (Zhang and Makris 2001; 

Kalkan and Kunnath 2006; DeJong et al. 2008; DeJong and Dimitrakopoulos 2014). In this regard, as a certain 

consensus has been reached for one-cycle sine pulse with at rest initial conditions, the study of a dry-joint scaled 

arch undergoing a windowed three-cycle sine pulse signal is here presented. Besides the fact that the main pulse 

occurs with not at rest initial conditions, no clear assumptions can be made on the location of the hinges throughout 

the test. Therefore, the adopted signal eliminates one of the main limitations of similar tests described in the 

available literature. The numerical simulation of the tests is also described. Transient analyses through FEM micro-

modelling have been performed, providing a contribution for the definition of joint properties. 

Regarding the experimental setup, a scaled arch assembled by dry-joint 3D printed voussoirs was built and 

tested on a shaking table. All the results have been plotted in frequency-amplitude domain, allowing estimating a 

failure curve in accordance with similar results available in literature. The in-plane motion of the arch was recorded 

with a tracking motion system, in the fashion of (Albuerne and Williams 2015; Calderini and Lagomarsino 2015; 

Calderini et al. 2015). The tests were carried out in the Structures and Materials Laboratory in Sapienza University 

of Rome, whereas the image analysis technique was developed at the Hydraulics Laboratory of the same 

University. 



 

On the other hand, the numerical simulations have been carried out through a commercially available FEM 

software, namely DIANA (TNO DIANA BV 2014). Although several studies have been carried out on masonry 

elements in this field, mostly walls, the application of FEM micro-modelling on vaulted structures seems still 

limited (Lourenço et al. 2010; Milani and Lourenço 2012; Ptaszkowska and Oliveira 2014; Rossi et al. 2014), even 

less in case of dynamic analysis (Liberatore et al. 1997). In this regard, a sensitivity analysis on the normal and 

tangential stiffness is presented, together with considerations on damping. Finally, scale effects are discussed. 

 

2. Test setup 

2.1 Geometry 

The geometrical features of the tested arch are reported in Fig. 2, where the arch has an angle of embrace 

of 140°, it is 92 mm wide, and the inclined supports were realized with steel angle bars bolted to the platform. 

Regarding the base, it is a magnesium slip table 700 x 700 mm2 large and 45 mm thick connected to an electrical-

dynamic shaker with V-shaped guide rail. In order to tune the drive signal sent to the slip table, ceramic shear 

accelerometers were used. 

Regarding the blocks, these were printed according to Fused Deposition Modelling technology with up to 

0.1 mm accuracy. The constituting material was the Acrylonitrile Butadiene Styrene (ABS), which is a widely 

used thermoplastic material. Moreover, in order to achieve the same friction coefficient as masonry elements, a 

mixture of fine sand (0.2 ÷ 1.0 mm diameter grain size) and polyester bi-component resin was spread on the lateral 

surface of the blocks, reaching an average value of 0.68 (friction angle equal to 34°). The mixture bonded well to 

the plastic surface of the blocks without showing a significant deterioration along the test campaign. The same 

mixture was applied to the supports to guarantee a consistent behaviour. 

Finally, since the material properties of the blocks, namely mass density, elasticity, strength, etc., do not 

affect the problem (at least in the linear range), only the external frame of the voussoirs was printed, filling the 

inner part with wood inserts. Considering the resulting mass density equal to around 450 kg/m3, the total mass of 

the specimen was 1.4 kg. The steel supports weight 1.7 kg each. 



 

 

Fig. 2 Geometrical dimensions of the tested arch 

2.2 Feature tracking based measuring technique 

According to Fig. 3, reference data were provided by an acquisition system consisting of: 1) a high-speed, 

high-resolution camera (Mikrotron EoSens) equipped with a 50-mm focal length lens capturing grey-scale images 

at up to 500 fps with a resolution of 12801024 pixels (for the present set of measurements, images were acquired 

at 400 fps); 2) a high-speed Camera Link digital video recorder operating in Full configuration (IO Industries DVR 

Express Core) to manage data acquisition and storage. The captured images were transferred to a personal 

computer under the control of the Express Core software. The images acquired by the Mikrotron EoSens camera 

were processed using a Lagrangian Particle Tracking technique named Hybrid Lagrangian Particle Tracking 

(HLPT) (Shindler et al. 2012). HLPT selects image features (image portions suitable to be tracked because their 

luminosity remains almost unchanged for small time intervals), determines the centroids of the particle associated 

to the features and tracks these from frame to frame. Though HLPT was developed to process images from fluid 

mechanics experiments (Moroni and Cenedese 2015), it was successfully employed here to track the markers on 

the voussoirs undergoing the motion. Feature detection within the HLPT algorithm is based on the solution of the 

Optical Flow (OF) equation, which defines the conservation of the pixel brightness intensity among couples of 

images. Since the OF equation is insufficient to compute the two unknown in-plane velocity components  

associated to each pixel, the equation is computed in a window W=HV (where H and V are the horizontal and 

vertical dimensions of the window respectively) centred at the pixel location. The OF equation is solved for a 

limited number of image pixels. Those pixels, named features, are determined by inverting the Harris matrix, 

defined only by the image grey levels (Shindler et al. 2012). Once the features are identified, two 1D Gaussian 



 

functions built around the integer position of each detected feature are used to compute the centroid coordinates. 

To track the centroids, the “Sum of Squared Differences” (SSD) among intensity values is used as the matching 

measure. The SSD was computed considering a centroid (and its interrogation window) and its “most similar” 

region at the successive time. The displacement is thus defined as the one that minimizes the SSD (Moroni and 

Cenedese 2005). Once the trajectories are reconstructed, displacement, velocity, and acceleration vectors are 

computed via central differences. 

 

Fig. 3 Experimental setup 

3. Laboratory experiments 

3.1 Tilting tests 

Tilting test represents a first order seismic assessment method and consists in a quasi-static rotation of the 

base platform until structure failure occurs. From the mechanical point of view, this test assumes a constant 

horizontal acceleration of infinite duration. Therefore, the dynamic behaviour of the structure is neglected and the 

consequent arch stability assessment may be excessively conservative. In this regard, it is well-known that the 

horizontal acceleration that activates the SDOF mechanism, i.e. the formation of four hinges, is smaller than the 

collapsing one. Rigid bodies, in fact, can move back to the rest position if the seismic impulse duration or the 

energy content are not large enough, or if no other impulses increase the oscillations (Clemente 1998; De Lorenzis 

et al. 2007; Dimitri et al. 2011). However, tilting tests are still valuable in providing an accurate assessment of the 

collapse mechanism and the lower bound seismic capacity. 



 

It is worth noting that, in the local reference, tilting the model implies that the vertical acceleration reduces 

in magnitude as the horizontal acceleration increases. Even so, since the problem is purely based on the stability 

and not on the stresses within the structure, this becomes a non-issue. The goal is thus only the ratio between 

horizontal and vertical acceleration, which is basically the tangent of the angle of tilt. 

In order to account for possible imperfections due to the manual assembling, the test was performed three 

times providing an average horizontal load multiplier λ = 0.29, which can be addressed as the fraction of the gravity 

acceleration necessary to transform the arch in a SDOF mechanism. Fig. 4a reports the schematic view of the 

SDOF mechanism (where the hinge location is identified by central angles), whereas Fig. 4b shows the frame of 

the collapsing arch during the test. 

 
 

a) b) 

Fig. 4 Arch mechanism following horizontal actions: a) schematic view and b) frame of the tilting test 

3.2 Shaking table tests 

The experimental campaign was aimed at evaluating the dynamic behaviour of the arch undergoing a series 

of one-cycle sine impulses with different amplitude and frequency. However, in order to meet the features of the 

equipment used to perform the tests, the signal was first windowed. The shaking table adopted for the dynamic 

tests, in fact, is based on an electrical-dynamic vibration system, that is, the circulation of current in the armature 

produces a magnetic field, thus the acceleration of the table. Accordingly, since no current circulates at the end of 

the tests, the table eventually returns to the rest position, i.e. null displacement and velocity. In order to address 

this aspect, the sine-shaped pulse was windowed by a Bohman window. Moreover, considering that the windowing 

process mainly affects the initial and final part of the signal, three cycles of sine were implemented, ensuring thus 

a unique central impulse. As an example, considering a 1.3 g, 10 Hz three-cycle sine signal, the effects of the 

windowing are reported in Fig. 5. As it is possible to see, the un-windowed acceleration produces a conspicuously 

large residual displacement (for the sake of clarity, the plot is stopped at the end of the first cycle). Also the 



 

velocities have different magnitude but, on the contrary, the accelerations of the two inputs are rather similar in 

the central part of the signal. 

 

Fig. 5 1.3 g, 10 Hz pre- and post-windowed signal (dash-dot blue line and black solid line, respectively) 

Considering the same signal, the comparison between the input acceleration history (i.e. drive) and the 

acceleration time history recorded on the table is reported in Fig. 6. The comparison is extended to velocity and 

displacement, as single and double integration of the acceleration. As it is possible to see, the output signal matched 

almost perfectly the input one for what concerns the frequency, but the peak acceleration is slightly larger for the 

recorded one. Moreover, the acceleration graph shows minor parts with high frequency acceleration, due to small 

impacts of the table in the change of directions. Given their short duration, they are not expected to modify the 

final results. In this regard, De Lorenzis et al. (2007) state that at high frequencies an arch does not fail by hinging 

and rocking, but it may fail due to long-lasting vibration between the voussoirs. 

 

 



 

 

Fig. 6 1.3 g, 10 Hz signal: comparison between input signal (drive) and recorded signal (dot black line 

and red solid line, respectively) 

 

Given the possible assembling imperfections, each test was repeated three times. Frequency and amplitude 

were increased progressively until at least two collapses were registered, out of the three repetitions. A total of 69 

runs was performed and the results are collected in Fig. 7, together with the outcome of the tilting test (λ = 0.29). 

Since the quasi-static nature of the latter, this represents the expected asymptote (in the lower frequency range) of 

any dynamic test campaign. By extension, the horizontal load multiplier provided by the tilting test denotes the 

threshold of the region where impulses cause no hinge to form, i.e. the arch acts as a rigid body following the base 

motion (DeJong et al. 2008). In general, the comparison between dynamic and tilting tests highlights how much a 

quasi-static analysis may underestimate the capacity of the arch. 

On the other hand, in order to highlight the trend of the dynamic tests, a linear regression analysis was 

performed (after a logarithmic transformation of the data) as an interpolation of the failure inputs. This allowed 

calculating an exponential curve (red dot line) constrained to asymptotically reach (for lower frequencies) the 

value provided by the tilting test. As it is possible to observe in Fig. 7, the fitted line matches well the results, with 

a coefficient of determination equal to R2 = 0.98. Considering fp and ap as the frequency and impulse amplitude, 

respectively, Equation (1) reports the regression equation: 
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𝑎𝑝 = 0.0647𝑒0.2801𝑓𝑝 + 0.225 (1) 

By extension, this failure curve may be assumed as a threshold for stability condition: the area below the 

curve indicates safe inputs, whereas the area over it indicates collapse inputs. 

The results of the experimental campaign were also compared with the curve computed according to 

DeJong et al. (2008, Table 3, with λ = 0.30, C1 = 0.02, C2 = –0.81, and tmin = 0.11), which represents the failure 

curve for the arch with 10% reduction thickness (as discussed in Section 4.1 below) undergoing a one-cycle sine 

impulse. As it is possible to notice, the latter curve is considerably more conservative and the reason lies on the 

out-of-phase impulses of the windowed signal implemented here. According to Clemente (1998), the tested arch 

would have failed due to unsafe rotations if additional impulses had not restored the displacements in a safety 

range. For this reason, compared to the one-cycle sine impulse, the arch showed a larger capacity, that is, the 

frequency being equal, the arch stood overall larger amplitude accelerations. 

 

Fig. 7 Results of the shaking table tests 

The arch usually failed after the end of the input signal following an apparent chaotic alternating four-hinge 

mechanism without experiencing any sliding between the blocks (due to the slenderness of the arch). In this regard, 

the numerical analyses performed by De Lorenzis et al. (2007) showed how, for a one-cycle sine impulse, hinge 

locations may change several times within a single half cycle of motion. In the present case, the behaviour observed 

was similar but more severe: additional hinges occurred when a clear four-hinge mechanisms was interrupted by 

further impulses out-of-phase with the rocking motion (DeJong et al. 2008). Accordingly, the arch may even 

(temporarily) experience larger and unsafe rotations if the subsequent impulse restores the displacements in a 

safety range (Clemente 1998). Considering the signal implemented in the present investigation (Fig. 5), the fade-
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in phase de-amplified the response for the specific pulse considered but, in general, initial conditions can either 

amplify or de-amplify the response (DeJong and Ochsendorf 2010; DeJong 2012). 

Focusing only on the trials with failure, a certain trend in the behaviour of the arch was detected. 

Considering, for instance, the time history reported in Fig. 5 and Fig. 6, the central part of the displacement graph 

resembles a one-cycle sinusoidal wave. In particular, looking at Fig. 6, three main movements (phases) can be 

detected: 1-2, forward from rest position to the positive peak; 2-3, reverse movement, until the negative peak; 3-

4, again forward movement; 4-5, slowly back to the rest position. 

The visual inspection of the recorded videos showed that several features were persistent in the tests. In 

particular, the phase 1-2 produced a clear movement of the arch with a rather limited hinge opening. In particular, 

following the outcome of the tilting test, only an acceleration larger than 0.29 g can activate a mechanism. 

Consequently, with reference to Fig. 6, being the amplitude of the first lobe almost equal to half of the main pulse 

one, all pulses reported in Fig. 7 with amplitude larger than 0.7 g made the arch rock before the main pulse 

occurrence. During the subsequent phase 2-3, the previous displacement reversed developing a clear four-hinge 

mechanism in accordance to the tilting test (compare full circles of Fig. 8 and Fig. 4a). The phase 3-4, completely 

out-of-phase, led to a more chaotic behaviour, with even a temporary occurrence of a fifth hinge and a sort of 

migration of the already open hinges. This migration is schematized with arrows in Fig. 8, together with the final 

four-hinge configuration reached during 4-5. Hinges C and D kept opening until the failure occurrence. In the case 

of one-cycle sine impulse, for which the most critical failure mode is consequent to a clear flipping impact which 

mirrors the primary mechanism. Conversely, in the present case the kinematics of the arch is mainly determined 

by a smooth progression of the hinge location, ending up with an unexpected failure configuration. 

 

Fig. 8 Schematic description of initial (full circles) and final hinge location (dashed line). Hinges C and D do not 

experience significant change of location, and coincide in full and dashed circles. 

 



 

4. Numerical analyses 

4.1 Limit analysis 

Corner rounding, slight variations in block size and imperfections in the manually assembled geometry may 

lead to a not accurate match of the voussoir lateral surfaces or a not perfect semi-circular shape, resulting in an 

overall reduction of the arch capacity. In order to account for this aspect, DeJong et al. (2008) suggested to consider 

a numerical model with a 20% reduction in the arch thickness (10 ÷ 15% due to corner rounding and 5 ÷ 10% due 

to slight variations in thickness and imperfections in the constructed geometry). The same approach was pursued 

by Albuerne et al. (2013), whose numerical model overestimated the capacity of the tested arch by approximately 

25%. In order to tune the numerical model with the experimental evidence, the latter authors considered a reduced 

thickness equal to 82% of the original value. 

To evaluate this aspect, the preliminary results provided by tilting analysis were compared with literature. 

In this regard, Clemente (1997) and Alexakis and Makris (2014) performed parametric limit analyses considering 

the principle of virtual works and a variational formulation, respectively, achieving very similar results. The 

authors estimated the horizontal load multiplier λ and the position of the hinges simply according to the 

thickness/centreline radius ratio (th/R) and angle of embrace β. Considering the geometrical data of the tested arch 

(Fig. 2), the comparison led to a reduction of the thickness for the numerical model of 10%, that is, maintaining 

the same centerline radius, th/R = 36/375 = 0.096. According to literature, the theoretical multiplier is λ = 0.30, 

3% larger than the experimental one (λ = 0.29). The comparison interested also the hinge locations showing a good 

agreement between the experimental and the expected results. 

 

4.2 Nonlinear static analyses 

The numerical analyses have been carried out through a commercial FEM software, namely DIANA (TNO 

DIANA BV 2014), considering very stiff and infinitely resistant voussoirs (Young modulus E = 105 MPa), with 

friction interface elements. In particular, a Coulomb friction interface has been adopted with cohesion, tensile 

strength and dilatancy angle set to zero. The friction angle was assumed 34° and the mass density equal to 450 

kg/m3, as measures in experiments. On the other hand, interface stiffness plays, unexpectedly, a role of capital 

importance. Given the peculiarity of the material adopted and the overall low stress levels expected during the 

tests, the interface stiffness was assessed by means of a sensitivity analysis on the final results. The range of value 

was deduced from literature, for both FEM and DEM analyses (Lourenço 1996; Tóth et al. 2009; Senthivel and 

Lourenço 2009; Lourenço et al. 2010; Dimitri et al. 2011; Ptaszkowska and Oliveira 2014; Dimitri and Tornabene 



 

2015; Giamundo et al. 2016). Moreover, with the aim of avoiding excessive block interpenetration, the limitation 

Kn > 0.1 N/mm3 and Kt > 0.04 N/mm3 (normal and tangential stiffness, respectively) have been assumed. The ratio 

between the two stiffness was set equal to 0.4 as the ratio between tangential and Young modulus with a Poisson’s 

ratio equal to 0.2 (Senthivel and Lourenço 2009). 

Attention was paid also to the geometrical nonlinearities. In order to account for them, rather than a Total 

Lagrange formulation (TL), which is more suitable for large rotations and displacements and small strains, an 

Updated Lagrange formulation (UL) was selected (TNO DIANA BV 2014). Since the deformation of the arch 

model is totally concentrated in the interface elements (exhibiting large displacements and strains), UL allowed a 

more advantageous framework for the description of large inelastic deformations.  

The mesh was generated considering plane triangle elements (T18IF) for the interfaces and tetrahedral 

elements (TE12L) for the voussoirs. The choice of implementing a three-dimensional model for analysing a 

phenomenon that is basically in-plane is due to future extension of the present model to study masonry vaults with 

three-dimensional behaviour. 

Since the voussoirs are assumed very stiff and infinitely resistant (whose behaviour is theoretically not 

affected by the FE discretization), in order to understand the effect of the mesh size in the description of the 

nonlinear behaviour of the interface elements, a mesh sensitivity analysis was performed. This is aimed at 

achieving an adequate balance between accuracy and computational effort, a crucial aspect for the subsequent 

analyses. The results of this study are reported in Table 1, where the comparison is limited to the multiplier of the 

horizontal load, as the mesh size does not significantly affect the failure mechanism. The failure mechanism, in 

particular, is in good agreement with tilting test and limit analysis. 

As expected, the more refined is the mesh, the longer is the analysis, and the more accurate the results, 

almost coincident with the theoretical result provided by limit analysis (Clemente 1998). However, according to 

the goal of this study, the mesh with 32 elements, that is, four elements along the thickness, was considered 

adequate for the subsequent analyses since it led to less than 5% difference with respect to the limit analysis. 

 

Interface 

elements 
Load multiplier λ 

Comparison with limit analysis 

(Clemente 1998) 
Running time* 

8 0.247 -17,7% 1 min 

32 0.286 -4,7% >4 min 

128 0.296 -1,3% >14 min 

512 0.299 -0,3% >105 min 

* Intel Core i7-3820 (3.60 GHz), RAM: 16 GB, Disk: SSD disk 



 

Table 1 Mesh sensitivity analysis considering the theoretical limit value λ = 0.30 (Clemente 1998) 

On the other hand, in case UL is considered, taking the horizontal displacement of the keystone as control 

point, Fig. 9 shows the capacity curves of the arch adopting three sets of interface stiffness. As it is possible to 

notice, the maximum capacity never reaches the one provided by the tilting analysis, unless large values of stiffness 

are considered. This behaviour can be ascribed to the normal stiffness of the interface. A small value inevitably 

leads to interpenetration of the voussoirs and the position of the hinge (supposed either at the intrados or at the 

extrados) to move inward, reducing the “effective” thickness of the arch (Fig. 10). This means the arch is basically 

thinner, thus with a lower capacity. In reverse, a hypothetical infinite interface stiffness would cause the hinges to 

locate on the edge line of the arch. In this regard, higher values of stiffness provide more suitable results. This 

effect can also justify the reduction of arch height proposed by several authors, as stated before and that the inverse 

problem of obtaining the “effective” thickness of dry-joint masonry arch needs to be addressed using force-

displacements, and not only ultimate load. 

Moreover, the softening branch of the curves clearly tends to a unique displacement (estimated equal to 6.6 

mm), which can be regarded as the ultimate displacement of the arch. The envelope of all the curves can be 

approximated with a straight line, whose shape parallels the nonlinear kinematic capacity curve of a rigid block 

undergoing horizontal forces and rocking in the base. For further description on this topic, among others, the reader 

is referred to (Doherty et al. 2002; Griffith et al. 2003; Griffith et al. 2004; de Felice 2011; Al Shawa et al. 2012). 

 

Fig. 9 Arch capacity curves varying the interface stiffness [N/mm3], with geometrical nonlinearities UL 
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a) b) 

Fig. 10 Hinge location for: a) Kn = Kt = 0.1 N/mm3, and b) Kn = Kt = 10 N/mm3 

4.3 Transient analysis 

The accelerograms recorded on the slip table during the tests were filtered before being used as input for 

the numerical analyses. In particular, an elliptic-type low- and high-pass filter was adopted, maintaining only the 

range 1÷50 Hz. For instance, Fig. 11 shows how the filtering process on the 1.3 g and 10 Hz signal got rid of the 

high-frequency content (see also Fig. 6). Moreover, UL was used in order to account for geometrical nonlinearities 

and this requested very small time step for the analysis to converge. In the present case, the step size was explicitly 

specified equal to 2 × 10-5 s. The equilibrium iteration method used for the steps was the Quasi-Newton (Secant) 

method based on BFGS algorithm (TNO DIANA BV 2014). The energy norm convergence criterion for the 

equilibrium iteration process was adopted with a tolerance of 1 × 10-3. 

Regarding the time integration scheme, the Hilber-Hughes-Taylor method (HHT, also called -method) 

was adopted, being unconditionally stable if α = –1/3 ÷ 0. As far as numerical dissipation is concerned, given the 

integration step adopted in the present study, i.e. 2 × 10-5 s, its effects appear rather negligible. In particular, 

according to Hilber et al. (1977, Fig. 4), having chosen α = –0.1, the modes with frequency higher than 10000 Hz 

result with a damping ratio larger than 0.01. For further approaches to the study of dissipation for rigid block 

structures, the reader is referred to e.g. (Liberatore et al. 1997; Peña et al. 2006; DeJong 2009). 

With respect to damping, the main difficulty is posed by the mathematical approximation. The most used 

approach is the viscous damping according to the Rayleigh formulation, but two key drawbacks must be stressed 

for dry-joint structures. Firstly, although for continuum modelling the damping is usually set equal to 5%, for rigid 

block dynamics there are no recommendations on its magnitude. For instance, in case of DEM analyses the values 

suggested in literature are at least one order of magnitude smaller (Peña et al. 2006; De Lorenzis et al. 2007). 



 

Secondly, a rigorous approach for defining the damping parameters is still missing. In this regard, DeJong (2009) 

provided recommendations for calculating Rayleigh damping parameters for DEM analyses. According to the 

author, mass-proportional damping should be either extremely small or eliminated entirely, whereas the stiffness-

proportional damping should be preserved to damp high frequencies out and get physically reasonable results. 

 

Fig. 11 Time history recorded on the slip table: pre- and post-filtering for the 1.3 g and 10 Hz signal 

(red dot line and solid black line, respectively) 

Structural damping represents another possible schematization of damping: It is independent of the 

frequency and proportional to the displacement, usually suggested in case local frictional effects are present 

throughout the model, such as dry rubbing of joints in a multi-link structure (TNO DIANA BV 2014). Since sliding 

phenomena were not evident in the tests and the present study is based on the stability of the arch (with large 

displacements), this form of damping can result in too conservative effects. 

Therefore, considering that small impacts (the main source of energy dissipation) were detected during the 

tests (mostly involving the migration of hinges A and B, as shown in Fig. 8), and the very small values proposed 
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in literature for DEM analysis of dry-joint arches, in the present study, a null value of the Rayleigh damping ratio 

was adopted. Inelastic damping appears naturally in the structural model. 

With the aim of validating the model against the experimental results, a sensitivity study regarding the 

interface stiffness was performed. Paralleling section 4.2, Kn was assumed equal to 0.01, 0.1, 1, 10, 100 N/mm3, 

whereas Kt was assumed equal to 0.1, 0.4 and 1 times Kn, resulting thus in 15 different sets. Whereas on the one 

hand the value 0.4 represents the same ratio assumed for the nonlinear static analysis, on the other hand, the ratios 

0.1 and 1 were considered as additional limit values. Stiffness values out of the proposed range were also adopted, 

leading to severe problems of convergence. This aspect is also stressed in literature. For instance, referring to the 

range of values adopted for performing DEM analyses (5×1011 ÷5×1012 N/mm3), De Lorenzis et al. (2007) stated 

that lower stiffness values can lead to contact overlap errors, whereas larger values can lead to excessively small 

time steps for the solution to remain stable. 

Given the dependence of the displacements on the interface stiffness (as stressed in Fig. 10), the numerical 

analyses have been compared according to the deformed shape and hinge location. As far as the tangential stiffness 

is concerned, in case Kt / Kn = 0.1, sliding between blocks was evident, although not expected from both literature 

perspective (De Lorenzis et al. 2007; D’Ayala and Tomasoni 2011) and experimental evidences. On the other 

hand, the ratios 0.4 and 1 led to almost coincident results. 

In order to provide a comparison between different sets of stiffness properties, Fig. 13 shows the deformed 

shapes relative to the same instant (when a former mechanism is more evident) of several analyses for the 1.3 g 

and 10 Hz signal. The frame of the experimental test is also reported. Besides the magnitude of the displacements, 

the comparison shows how the interface stiffness strongly influences the mechanism. Looking at hinge locations 

(highlighted in the first frame), increasing the stiffness of the interface, they basically move toward the supports, 

and the sets with Kn = Kt = 0.1, 1 N/mm3 result as the best approximations. 

 

 



 

 

 

 

 

Fig. 12 Comparison between experimental test and numerical analyses with different interface properties 

(3:1 displacement scale) for the 1.3 g and 10 Hz signal at the same instant 

The numerical models were also assessed comparing the displacements relative to the slip table and the 

record of the feature tracking technique. Two control points were selected, namely, the extrados corners of the 

sixth voussoir from both springs (Fig. 13). The position of Control point #2 is justified by the location of hinge C 

of Fig. 8, whereas Control point #1 is simply the symmetric one with respect to the axis of symmetry. Fig. 14 and 

Fig. 15 show the comparison inherent the signals 10 Hz - 1.3 g and 5 Hz - 0.5 g, where the displacements of the 

Kn = Kt = 0.1 N/mm3 

Kn = Kt = 1 N/mm3 

Kn = Kt = 10 N/mm3 

Kn = Kt = 100 N/mm3 



 

control points are shown up to the end of the signals (0.3 and 0.6 s, respectively). As it is possible to notice, the 

match is notable. 

 

Fig. 13 Sketch of the arch voussoirs by means of marker location and position of the control points 

 

Fig. 14 Displacement of the two control points: experimental and numerical results for Kn = Kt = 0.1 N/mm3 
(10 Hz - 1.3 g signal) 
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Fig. 15 Displacement of the two control points: experimental and numerical results for Kn = Kt = 0.1 N/mm3 
(5 Hz - 0.5 g signal) 

 

Finally, the results of the numerical analyses, considering only the interface stiffness equal to Kn = Kt = 0.1 

N/mm3 are reported in Fig. 16 (refer to Fig. 7). The signals recorded on the table that brought the physical arch to 

collapse were scaled up to achieve a failure configuration in the numerical analyses. The results matched well the 

experimental outcomes in the low frequency range, slightly overestimating the capacity for higher frequency 

values. The collapse mechanism was also well predicted by the numerical model. As an example, the deformed 

shape following the 1.3 g - 10 Hz signal is reported in Fig. 17 (the lower voussoirs are fully constrained to account 

for the supports) together with the recorded frame of the tests. 

 

Fig. 16 Results of the numerical analyses with Kn = Kt = 0.1 N/mm3 
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a) 

 

b) 

Fig. 17 1.3 g - 10 Hz signal ultimate displacement: comparison between 

a) FEM analysis (1:1 displacement scale) and b) recorded frame of the test 

Finally, additional considerations on scale effect are worth being noticed. Since the present study has dealt 

with (assumed) rigid blocks, the failure is a matter of stability, which does not concern the strength of the material. 

Accordingly, the specific mass of the specimen may be not related to the one of real structures, as in the present 

case, but it is still possible to get generalized results only by means of the geometrical factor π (Liberatore and 

Spera 2001; De Lorenzis et al. 2007; DeJong et al. 2008). In particular, regarding dynamic analysis, time and 

frequency are related to π through the quantity π0.5 and π-0.5, respectively. Consequently, considering the curve 

reported in Fig. 7, regardless the specific mass, the performance of similar arches (equal thickness/inner radius 

ratio and angle of embrace) can be assessed simply scaling the curve along the abscissa by the factor π-0.5. As a 

matter of fact, discarding the possible damage due to higher energy impacts, larger arches make the curve move 

toward the origin, i.e. for a given impulse, frequency and shape of the arch, the capacity increases as the average 

radius increases (De Lorenzis et al. 2007; DeJong et al. 2008). 



 

5. Conclusions 

In the present paper, the seismic behaviour of scaled dry-joint arch was investigated under experimental 

tests and numerical analyses. After a preliminary tilting test, which provided data for the first calibration of the 

numerical model, the arch was tested under a novel signal built by a windowed three-cycle sinusoidal wave. 

Compared with the available literature, the specimen was subjected to the main pulse when it was not at rest, facing 

out-of-phase displacement. Thanks to high-speed camera, the recordings were inspected and a simplified 

schematization of the complex behaviour of the specimen was proposed. This schematization could represent a 

valuable basis for a further analytical approach. In this regard, the available literature deals only with simple shape 

pulses with a symmetric behaviour based on a priori defined mechanism. A more sophisticated model able to 

localize the hinges according to an energetic criterion is desirable. 

The results of the shaking table tests were reported in the frequency-amplitude domain. Compared with 

one-cycle sine impulse, the signal adopted here resulted less conservative, that is, for a given frequency the arch 

can stand larger amplitude windowed pulses. This is due to the out-of-phase content which allowed the arch to, 

temporarily, experience unsafe displacements (coming back to a safe configuration soon after). However, in 

agreement with literature, the regression line that best fits the failure inputs is of exponential type. 

As far as the numerical model is concerned, the major concern of this study was the implementation of 

FEM analyses for simulating a physical phenomenon that is basically discrete (due to dry joints). However, the 

model with friction interface elements (where all the nonlinearities are condensed) caught well the behaviour of 

the arch, even in case of large (finite) displacements. The comparison between the numerical results and the 

displacements recorded with a feature tracking technique showed an appreciable match. 

An important conclusion for modelling is that greater attention has been paid to the stiffness of the interface 

elements. A sensitivity study was presented for both nonlinear static and transient analysis. For both cases, notable 

differences were found varying the ratio between tangential and normal stiffness (0.1, 0.4, 1). Compared with 

literature and experimental evidences, the smallest ratio led to unreal sliding occurrence, thus neglected. On the 

other hand, values equal to 0.4 and 1 provided almost coincident results. 

The model calibration indicated values of normal stiffness for nonlinear static analyses valued in the range 

0.1 ÷ 1 N/mm3 as the most suitable for transient analyses. However, it must be noted that these values were 

estimated according to a scaled specimen built with dry-joint plastic blocks, without reaching the stress levels of 

real scale masonry elements. This crucial aspect still requests more efforts and the behaviour of vaulted elements 

with different scale and materials should be investigated. It is noted that the density or stress level of the joints is 



 

expected to affect the joint stiffness and that the stiffness of mortared joints is much larger than the stiffness values 

found. 

Finally, regarding the nonlinear static analysis, in case geometrical nonlinearities were accounted for, a 

strong analogy with the nonlinear behaviour of a free-standing rigid block undergoing incremental horizontal force 

was stressed. Further investigations are still requested to examine in depth this aspect. 
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