266 research outputs found
Bioenergetic Changes during Differentiation of Human Embryonic Stem Cells along the Hepatic Lineage.
Mitochondrial dysfunction has been demonstrated to result in premature aging due to its effects on stem cells. Nevertheless, a full understanding of the role of mitochondrial bioenergetics through differentiation is still lacking. Here we show the bioenergetics profile of human stem cells of embryonic origin differentiating along the hepatic lineage. Our study reveals especially the transition between hepatic specification and hepatic maturation as dependent on mitochondrial respiration and demonstrates that even though differentiating cells are primarily dependent on glycolysis until induction of hepatocyte maturation, oxidative phosphorylation is essential at all stages of differentiation
Modeling of MnS precipitation during the crystallization of grain oriented silicon steel
The process of manganese sulfide formation in the course of grain-oriented silicon steel solidification process is described in the paper. Fine dispersive MnS inclusions are grain growth inhibitors and apart from AlN inclusions they contribute to the formation of a privileged texture, i.e. Goss texture. A computer simulation of a high-silicon steel ingot solidification with the use of authorâs software has been performed. Ueshima model was adapted for simulating the 3 % Si steel ingot solidification. The calculations accounted for the back diffusion effect according to WoĹczyĹski equation. The computer simulation results are presented in the form of plots representing the process of steel components segregation in a solidifying ingot and curves illustrating the inclusion separation process
Population genetic structure of three species in the genus Astrocaryum G. Mey. (Arecaceae).
We assessed the level and distribution of genetic diversity in three species of the economically important palm genus Astrocaryum located in ParĂĄ State, in northern Brazil. Samples were collected in three municipalities for Astrocaryum aculeatum: Belterra, SantarĂŠm, and Terra Santa; and in two municipalities for both A. murumuru: BelĂŠm and Santo AntĂ´nio do TauĂĄ and A. paramaca: BelĂŠm and Ananindeua. Eight microsatellite loci amplified well and were used for genetic analysis. The mean number of alleles per locus for A. aculeatum, A. murumuru, and A. paramaca were 2.33, 2.38, and 2.06, respectively. Genetic diversity was similar for the three species, ranging from HE = 0.222 in A. aculeatum to HE = 0.254 in A. murumuru. Both FST and AMOVA showed that most of the genetic variation was found within populations for all three species, but high genetic differentiation among populations was found for A. aculeatum. Three loci were not in Hardy-Weinberg equilibrium, with populations of A. paramaca showing a tendency for the excess of heterozygotes (FIS = -0.144). Gene flow was high for populations of A. paramaca (Nm = 19.35). Our results suggest that the genetic diversity within populations followed the genetic differentiation among populations due to high gene flow among the population. Greater geographic distances among the three collection sites for A. aculeatum likely hampered gene flow for this species
Modelling of non-metallic particles motion process in foundry alloys
The behaviour of non-metallic particles in the selected composites was analysed, in the current study. The calculations of particles floating in liquids differing in viscosity were performed. Simulations based on the Stokes equation were made for spherical SiC particles and additionally the particle size influence on Reynolds number was analysed.The movement of the particles in the liquid metal matrix is strictly connected with the agglomerate formation problem.Some of collisions between non-metallic particles lead to a permanent connection between them. Creation of the two spherical particles and a metallic phase system generates the adhesion force. It was found that the adhesion force mainly depends on the surface tension of the liquid alloy and radius of non-metallic particles
Modelling of the crystallization front â particles interactions in ZnAl/(SiC)p composites
The presented work focuses on solid particle interactions with the moving crystallization front during a solidification of the metal matrix composite. The current analyses were made for silicon carbide particles and ZnAl alloy with different additions of aluminium. It was found, that the chemical composition of the metal matrix influences the behaviour of SiC particles. At the same time calculations of the forces acting on a single particle near the crystallization front were performed. For each alloy type the critical conditions that determine whether particle will be absorbed or pushed, were specified
Occurrence of airborne spores of fungi causing grain mould over a sorghum crop
Airborne spores of Fusarium, Curvularia and Alternaria species which cause sorghum grain mould were monitored over rainy season crops of the grain-mould susceptible sorghum hybrid CSH 1 using a Hirst spore trap. Spore trapping began at the flowering stage (GS 61) and was continued beyond grain maturity (GS 92). Spores of all three fungal genera were present during the post-flowering stages. However, more spores were trapped after the hard dough stage (GS 87) than at earlier growth stages. Spore content in the air increased after grain maturity (GS 92) under moist or humid conditions. Fusarium spores were most prevalent before dawn, whereas most spores of Alternaria and Curvularia were trapped during the day. The frequency of Fusarium and Alternaria spores in the two years differed while that of Curvularia was similar in both years. The predominant species isolated from surface-sterilized moulded grain on malt-streptomycin agar were A. tenuissima, F. moniliforme, C. lunata and Phoma sorghina. These results prove that spores of mould causal fungi were naturally available in the air and initiated grain mould epidemics under suitable weather conditions
Rational Redesign of Glucose Oxidase for Improved Catalytic Function and Stability
Glucose oxidase (GOx) is an enzymatic workhorse used in the food and wine industries to combat microbial contamination, to produce wines with lowered alcohol content, as the recognition element in amperometric glucose sensors, and as an anodic catalyst in biofuel cells. It is naturally produced by several species of fungi, and genetic variants are known to differ considerably in both stability and activity. Two of the more widely studied glucose oxidases come from the species Aspergillus niger (A. niger) and Penicillium amagasakiense (P. amag.), which have both had their respective genes isolated and sequenced. GOx from A. niger is known to be more stable than GOx from P. amag., while GOx from P. amag. has a six-fold superior substrate affinity (KM) and nearly four-fold greater catalytic rate (kcat). Here we sought to combine genetic elements from these two varieties to produce an enzyme displaying both superior catalytic capacity and stability. A comparison of the genes from the two organisms revealed 17 residues that differ between their active sites and cofactor binding regions. Fifteen of these residues in a parental A. niger GOx were altered to either mirror the corresponding residues in P. amag. GOx, or mutated into all possible amino acids via saturation mutagenesis. Ultimately, four mutants were identified with significantly improved catalytic activity. A single point mutation from threonine to serine at amino acid 132 (mutant T132S, numbering includes leader peptide) led to a three-fold improvement in kcat at the expense of a 3% loss of substrate affinity (increase in apparent KM for glucose) resulting in a specify constant (kcat/KM) of 23.8 (mMâ1 ¡ sâ1) compared to 8.39 for the parental (A. niger) GOx and 170 for the P. amag. GOx. Three other mutant enzymes were also identified that had improvements in overall catalysis: V42Y, and the double mutants T132S/T56V and T132S/V42Y, with specificity constants of 31.5, 32.2, and 31.8 mMâ1 ¡ sâ1, respectively. The thermal stability of these mutants was also measured and showed moderate improvement over the parental strain
Determination of substrate log-normal distribution in the AZ91/SICP composite
The aim in this work is to develop a log-normal distribution of heterogeneous nucleation substrates for the composite based on AZ91 alloy reinforced by SiC particles. The computational algorithm allowing the restore of the nucleation substrates distribution was used. The experiment was performed for the AZ91 alloy containing 1 % wt. of SiC particles. Obtained from experiment, the grains density of magnesium primary phase and supercooling were used to algorithm as input data
The EndoC-βH1 cell line is a valid model of human beta cells and applicable for screenings to identify novel drug target candidates
Objective: To characterize the EndoC-βH1 cell line as a model for human beta cells and evaluate its beta cell functionality, focusing on insulin secretion, proliferation, apoptosis and ER stress, with the objective to assess its potential as a screening platform for identification of novel anti-diabetic drug candidates. Methods: EndoC-βH1 was transplanted into mice for validation of in vivo functionality. Insulin secretion was evaluated in cells cultured as monolayer and as pseudoislets, as well as in diabetic mice. Cytokine induced apoptosis, glucolipotoxicity, and ER stress responses were assessed. Beta cell relevant mRNA and protein expression were investigated by qPCR and antibody staining. Hundreds of proteins or peptides were tested for their effect on insulin secretion and proliferation. Results: Transplantation of EndoC-βH1 cells restored normoglycemia in streptozotocin induced diabetic mice. Both in vitro and in vivo, we observed a clear insulin response to glucose, and, in vitro, we found a significant increase in insulin secretion from EndoC-βH1 pseudoislets compared to monolayer cultures for both glucose and incretins.Apoptosis and ER stress were inducible in the cells and caspase 3/7 activity was elevated in response to cytokines, but not affected by the saturated fatty acid palmitate.By screening of various proteins and peptides, we found Bombesin (BB) receptor agonists and Pituitary Adenylate Cyclase-Activating Polypeptides (PACAP) to significantly induce insulin secretion and the proteins SerpinA6, STC1, and APOH to significantly stimulate proliferation.ER stress was readily induced by Tunicamycin and resulted in a reduction of insulin mRNA. Somatostatin (SST) was found to be expressed by 1% of the cells and manipulation of the SST receptors was found to significantly affect insulin secretion. Conclusions: Overall, the EndoC-βH1 cells strongly resemble human islet beta cells in terms of glucose and incretin stimulated insulin secretion capabilities. The cell line has an active cytokine induced caspase 3/7 apoptotic pathway and is responsive to ER stress initiation factors. The cells' ability to proliferate can be further increased by already known compounds as well as by novel peptides and proteins. Based on its robust performance during the functionality assessment assays, the EndoC-βH1 cell line was successfully used as a screening platform for identification of novel anti-diabetic drug candidates. Keywords: EndoC-βH1, Pseudoislets, Glucose stimulated insulin secretion, Somatostatin signaling, Proliferatio
Ants Sow the Seeds of Global Diversification in Flowering Plants
Background: The extraordinary diversification of angiosperm plants in the Cretaceous and Tertiary periods has produced an
estimated 250,000â300,000 living angiosperm species and has fundamentally altered terrestrial ecosystems. Interactions
with animals as pollinators or seed dispersers have long been suspected as drivers of angiosperm diversification, yet
empirical examples remain sparse or inconclusive. Seed dispersal by ants (myrmecochory) may drive diversification as it can reduce extinction by providing selective advantages to plants and can increase speciation by enhancing geographical
isolation by extremely limited dispersal distances.
Methodology/Principal Findings: Using the most comprehensive sister-group comparison to date, we tested the hypothesis that myrmecochory leads to higher diversification rates in angiosperm plants. As predicted, diversification rates
were substantially higher in ant-dispersed plants than in their non-myrmecochorous relatives. Data from 101 angiosperm
lineages in 241 genera from all continents except Antarctica revealed that ant-dispersed lineages contained on average
more than twice as many species as did their non-myrmecochorous sister groups. Contrasts in species diversity between
sister groups demonstrated that diversification rates did not depend on seed dispersal mode in the sister group and were
higher in myrmecochorous lineages in most biogeographic regions.
Conclusions/Significance: Myrmecochory, which has evolved independently at least 100 times in angiosperms and is
estimated to be present in at least 77 families and 11 000 species, is a key evolutionary innovation and a globally important driver of plant diversity. Myrmecochory provides the best example to date for a consistent effect of any mutualism on largescale diversification
- âŚ