17 research outputs found

    Soybean protein isolate gel particles as foaming and emulsifying agents

    Get PDF
    In order to enhance functional properties of commercial soybean protein isolate (SPI), SPI microgel particles as foaming and emulsifying agents were studied. Microparticulation of heat-set SPI macrogels containing no added and various added salts was systematically carried out using a high-speed blender, an ultrasonicator and a high-pressure jet homogenizer. Among the tested conditions, the smallest gel particles were achieved via the high-pressure jet homogenization process under conditions of no added salts. Conversion of ordinary high molecular weight commercial SPI into the counterpart gel particles enhanced foam stabilizing properties of the suspensions and stability against creaming and freeze-thaw triggered instability of the emulsions, while the enhancement was not necessarily achieved for low-molecular-weight partially hydrolysed SPI. This can be attributed to the different steric repulsive effects of the gel particles

    Modeling Er/Yb fiber lasers at high powers

    No full text
    Conventional models of Er/Yb co-doped fibers assume all ytterbium ions are equally involved in the energy transfer with erbium ions, governed by a singular transfer rate. This would predict output power clamping once ytterbium parasitic lasing starts, contrary to the observations that the output continued to grow albeit at a slower rate. One study explained this using elevated temperature at high powers. Our study, however, shows that elevated temperature and mode-dependent effects only play insignificant roles. A new model is developed based on the existence of isolated ytterbium ions, which can explain all the observed experimental behaviors.</p

    Solid Tellurite Optical Fiber Based on Stack-and-Draw Method for Mid-Infrared Supercontinuum Generation

    No full text
    Broadband, high-power mid-infrared (mid-IR) sources are critical for many applications. Compared to alternatives such as fluorides and chalcogenides, tellurite fibers are more robust and can handle much higher power. Tellurite fibers also have high nonlinearity and a material zero dispersion close to 2 µm, making them ideal for nonlinear processes pumped by Tm-doped silica fiber lasers. In this work, we have demonstrated solid tellurite fibers fabricated by a stack-and-draw process and investigated their potential for broadband mid-IR supercontinuum generation. We have identified that fibers with low dispersion are beneficial and that low residual hydroxyl (OH) is critical for broadband mid-IR supercontinuum generation in tellurite fibers pumped at ~2 µm

    Study of Physically Transient Insulating Materials as a Potential Platform for Transient Electronics and Bioelectronics

    Get PDF
    Controlled degradation and transiency of materials is of significant importance in the design and fabrication of degradable and transient biomedical and electronic devices and platforms. Here, the synthesis of programmable biodegradable and transient insulating polymer films is reported, which have sufficient physical and chemical properties to be used as substrates for the construction of transient electronics. The composite structure can be used as a means to control the dissolution and transiency rate of the polymer composite film. Experimental and computational studies demonstrate that the addition of gelatin or sucrose to a PVA polymer matrix can be used as a means to program and either slow or enhance the transiency of the composite. The dissolution of the polymer composites are fitted with inverse exponential functions of different time constants; the lower time constants are an indication of faster transiency of the polymer composite. The addition of gelatin results in larger time constants, whereas the addition of sucrose generally results in smaller time constants
    corecore