13 research outputs found

    Evaluation of skin absorption of drugs from topical and transdermal formulations

    Full text link

    Controlled Iontophoretic Delivery in Vitro and in Vivo of ARN14140 - A Multitarget Compound for Alzheimer's Disease

    No full text
    ARN14140 is a galantamine-memantine conjugate that acts upon both cholinergic and glutamatergic pathways for better management of Alzheimer's disease. Poor oral bioavailability and pharmacokinetics meant that earlier preclinical in vivo studies employed intracerebroventricular injection to administer ARN14140 directly to the brain. The aim of the present study was to evaluate the feasibility of using constant current transdermal iontophoresis for the noninvasive systemic delivery of ARN14140 and to quantify the amounts present in the blood and the brain. Preliminary experiments in vitro were performed using porcine skin and validated with human skin. Cumulative ARN14140 permeation across the skin increased linearly with current density and concentration. Delivery efficiency (i.e., fraction of the amount applied that is delivered) reached an exceptional 76.9%. Statistically equivalent delivery was observed after iontophoresis across human and porcine skin. In vivo studies in male Wistar rats showed that iontophoretic transport of ARN14140 could be controlled using the current density (426.7 \ub1 42 and 1118.3 \ub1 73 nmol/cm2 at 0.15 and 0.5 mA/cm2 for 6 h) and demonstrated that transdermal iontophoresis was able to deliver ARN14140 noninvasively to the brain. This is the first report quantifying drug levels in the blood and the brain following transdermal iontophoresis

    Polymeric micelle mediated follicular delivery of spironolactone: Targeting the mineralocorticoid receptor to prevent glucocorticoid-induced activation and delayed cutaneous wound healing.

    Get PDF
    Impaired wound healing in patients receiving glucocorticoid therapy is a serious clinical concern: mineralocorticoid receptor (MR) antagonists can counter glucocorticoid-induced off-target activation of MR receptors. The aim of this study was to investigate the cutaneous delivery of the potent MR antagonist, spironolactone (SPL), from polymeric micelle nanocarriers, prepared using a biodegradable copolymer, methoxy-poly(ethylene glycol)-di-hexyl-substituted-poly(lactic acid). Immunofluorescent labelling of the MR showed that it was principally located in the pilosebaceous unit (PSU), justifying the study rationale since polymeric micelles accumulate preferentially in appendageal structures. Cutaneous biodistribution studies under infinite and finite dose conditions, demonstrated delivery of pharmacologically relevant amounts of SPL to the epidermis and upper dermis. Preferential PSU targeting was confirmed by comparing amounts of SPL in PSU-containing and PSU-free skin biopsies: SPL nanomicelles showed 5-fold higher delivery of SPL in the PSU-containing biopsies, 0.54 ± 0.18 ng/mm <sup>2</sup> vs. 0.10 ± 0.03 ng/mm <sup>2</sup> , after application of a hydrogel in finite conditions. Canrenone, an active metabolite of SPL, was also quantified in skin samples. In addition to being used for the treatment of delayed cutaneous wound healing by site-specific antagonism of the MR, the formulation might also be used to treat pilosebaceous androgen-related skin diseases, e.g. acne vulgaris, since SPL is a potent androgen receptor antagonist

    Ocular Biodistribution of Spironolactone after a Single Intravitreal Injection of a Biodegradable Sustained-Release Polymer in Rats.

    No full text
    Sustained-release formulations for ocular delivery are of increasing interest given their potential to significantly improve treatment efficacy and patient adherence. The objectives of this study were (i) to develop a sustained-release formulation of spironolactone (SPL) using a biodegradable and injectable polymer, hexyl-substituted poly-lactic acid (hexPLA) and (ii) to investigate the ocular biodistribution and tolerability of SPL and its metabolites in rats in vivo over 1 month following a single intravitreal injection (IVT inj). The concentrations of SPL and its two principal active metabolites, 7α-thiomethylspironolactone and canrenone (CAN), in the different ocular compartments were determined at different time points (3, 7, and 31 days after IVT inj) using a validated ultra-high-performance liquid chromatography-mass spectrometry method. Systemic exposure following a single IVT inj of 5% SPL-hexPLA formulation was evaluated by quantifying SPL and its metabolites in the plasma. Ocular tolerability of the formulation was evaluated using in vivo retinal imaging and histology. In vitro release studies revealed a sustained release of SPL from 5% SPL-hexPLA for up to 65 days. In vivo studies showed that SPL and its metabolites were detected in all ocular tissues at 3 and 7 days post-IVT inj. At 31 days post-IVT inj, SPL and CAN were mainly detected in the retina. These results also highlighted the clearance pathway of SPL and its metabolite involving the anterior and posterior routes in the first week (days 3 and 7), then mainly the posterior segment in the last week (day 31). This study showed that a single IVT inj of 5% SPL-hexPLA in rats enabled sustained delivery of therapeutic amounts of SPL for up to 1 month to the retina without systemic exposure. This formulation may be of interest for the local treatment of diseases involving overactivation of the mineralocorticoid receptor in the chorioretina such as chronic central serous chorioretinopathy

    Transdermal therapeutic systems for memantine delivery. Comparison of passive and iontophoretic transport

    Full text link
    [EN] Memantine is a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist used in the treatment of moderate to severe dementia including the symptoms of Alzheimer's disease (AD). It is administered orally but compliance, swallowing problems and the routine use of multiple medications in elderly AD patients means that an alternative route of administration would be of interest. The aim of the present. study was to develop memantine hydrochloride occlusive transdermal therapeutic systems (TI'S) for passive and iontophoretic delivery across the skin. Polyvinyl pyrrolidone (PVP) and a mixture with polyvinyl alcohol (PVA) were employed as polymeric matrices. The study involved the TTS characterization in addition to quantification of the memantine transport across porcine skin in vitro. The evaluation of the ITS physical properties suggested that systems were made more mechanically resistant by including PVA (6%) or high concentrations of PVP (24%). Moreover, a linear correlation was observed between the concentration of PVP and the bioadhesion of the systems. Drug delivery expefiments showed that the highest transdermal flux provided by a passive TTS (PVP 24% w/w limonene) was 8.89 +/- 0.81 mu g cm(-2) h(-1) whereas the highest iontophoretic transport was 46.4 +/- 3.6 mu g cm(-2) h(-1). These innovative TTS would enable two dosage regimens that could lead to therapeutic plasma concentrations.The authors wish to thank the "Generalitat Valenciana" (AP-114/09; AP-155/10; AP-175/11) and the "Universidad CEU Cardenal Herrera" for their financial support. The authors also thank Pharsight corp. for the academic license of WinNonlin 5.0.1.Del Rio-Sancho, S.; Serna-Jiménez, C.; Sebastián-Morelló, M.; Calatayud-Pascual, M.; Balaguer-Fernández, C.; Femenia-Font, A.; Kalia, Y.... (2017). Transdermal therapeutic systems for memantine delivery. Comparison of passive and iontophoretic transport. International Journal of Pharmaceutics. 517(1-2):104-111. https://doi.org/10.1016/j.ijpharm.2016.11.038S1041115171-

    A model of solute transport through stratum corneum using solute capture and release

    No full text
    A one-dimensional model of solute transport through the stratum corneum is presented. Solute is assumed to diffuse through lipid bi-layers surrounding impermeable corneocytes. Transverse diffusion (perpendicular to the skin surface) through lipids separating adjacent corneocytes, is modeled in the usual way. Longitudinal diffusion (parallel to the skin surface) through lipids between corneocyte layers, is modeled as temporary trapping of solute, with subsequent release in the transverse direction. This leads to a linear equation for one-dimensional transport in the transverse direction. The model involves an arbitrary function whose precise form is uncertain. For a specific choice of this function, closed form expressions for the Laplace transform of solute out-flux at the inner boundary, and for the time lag are obtained in the case that a constant solute concentration is maintained at the outer skin surface, with the inner boundary of the stratum corneum kept at zero concentration, and with the stratum corneum initially free of solute
    corecore