10 research outputs found

    Pathogenic variants in glutamyl-tRNAGln amidotransferase subunits cause a lethal mitochondrial cardiomyopathy disorder.

    Get PDF
    Mitochondrial protein synthesis requires charging mt-tRNAs with their cognate amino acids by mitochondrial aminoacyl-tRNA synthetases, with the exception of glutaminyl mt-tRNA (mt-tRNAGln). mt-tRNAGln is indirectly charged by a transamidation reaction involving the GatCAB aminoacyl-tRNA amidotransferase complex. Defects involving the mitochondrial protein synthesis machinery cause a broad spectrum of disorders, with often fatal outcome. Here, we describe nine patients from five families with genetic defects in a GatCAB complex subunit, including QRSL1, GATB, and GATC, each showing a lethal metabolic cardiomyopathy syndrome. Functional studies reveal combined respiratory chain enzyme deficiencies and mitochondrial dysfunction. Aminoacylation of mt-tRNAGln and mitochondrial protein translation are deficient in patients' fibroblasts cultured in the absence of glutamine but restore in high glutamine. Lentiviral rescue experiments and modeling in S. cerevisiae homologs confirm pathogenicity. Our study completes a decade of investigations on mitochondrial aminoacylation disorders, starting with DARS2 and ending with the GatCAB complex

    Sequence variation in PPP1R13L results in a novel form of cardio‐cutaneous syndrome

    No full text
    Dilated cardiomyopathy (DCM) is a life‐threatening disorder whose genetic basis is heterogeneous and mostly unknown. Five Arab Christian infants, aged 4–30 months from four families, were diagnosed with DCM associated with mild skin, teeth, and hair abnormalities. All passed away before age 3. A homozygous sequence variation creating a premature stop codon at PPP1R13L encoding the iASPP protein was identified in three infants and in the mother of the other two. Patients’ fibroblasts and PPP1R13L‐knocked down human fibroblasts presented higher expression levels of pro‐inflammatory cytokine genes in response to lipopolysaccharide, as well as Ppp1r13l‐knocked down murine cardiomyocytes and hearts of Ppp1r13l‐deficient mice. The hypersensitivity to lipopolysaccharide was NF‐ÎșB‐dependent, and its inducible binding activity to promoters of pro‐inflammatory cytokine genes was elevated in patients’ fibroblasts. RNA sequencing of Ppp1r13l‐knocked down murine cardiomyocytes and of hearts derived from different stages of DCM development in Ppp1r13l‐deficient mice revealed the crucial role of iASPP in dampening cardiac inflammatory response. Our results determined PPP1R13L as the gene underlying a novel autosomal‐recessive cardio‐cutaneous syndrome in humans and strongly suggest that the fatal DCM during infancy is a consequence of failure to regulate transcriptional pathways necessary for tuning cardiac threshold response to common inflammatory stressors

    A Founder Mutation in EHD1 Presents with Tubular Proteinuria and Deafness

    Get PDF
    Background The endocytic reabsorption of proteins in the proximal tubule requires a complex machinery and defects can lead to tubular proteinuria. The precise mechanisms of endocytosis and processing of receptors and cargo are incompletely understood. EHD1 belongs to a family of proteins presumably involved in the scission of intracellular vesicles and in ciliogenesis. However, the relevance of EHD1 in human tissues, in particular in the kidney, was unknown. Methods Genetic techniques were used in patients with tubular proteinuria and deafness to identify the disease-causing gene. Diagnostic and functional studies were performed in patients and disease models to investigate the pathophysiology. Results We identified six individuals (5–33 years) with proteinuria and a high-frequency hearing deficit associated with the homozygous missense variant c.1192C>T (p.R398W) in EHD1. Proteinuria (0.7–2.1 g/d) consisted predominantly of low molecular weight proteins, reflecting impaired renal proximal tubular endocytosis of filtered proteins. Ehd1 knockout and Ehd1R398W/R398W knockin mice also showed a high-frequency hearing deficit and impaired receptor-mediated endocytosis in proximal tubules, and a zebrafish model showed impaired ability to reabsorb low molecular weight dextran. Interestingly, ciliogenesis appeared unaffected in patients and mouse models. In silico structural analysis predicted a destabilizing effect of the R398W variant and possible inference with nucleotide binding leading to impaired EHD1 oligomerization and membrane remodeling ability. Conclusions A homozygous missense variant of EHD1 causes a previously unrecognized autosomal recessive disorder characterized by sensorineural deafness and tubular proteinuria. Recessive EHD1 variants should be considered in individuals with hearing impairment, especially if tubular proteinuria is noted
    corecore