127 research outputs found

    Hsp90 picks PIKKs via R2TP and Tel2

    Get PDF
    Phosphatidylinositol-3 kinase-like kinases (PIKKs) are dependent on Hsp90 for their activation via the R2TP complex and Tel2. In this issue of Structure, Pal and colleagues present the molecular mechanism by which PIKKs are recruited to Hsp90

    Polyphenol Concentration of Native Plant Species, and Its Effect on Blood Antioxidant Capacity in Grazing Cattle in a Species-Rich Vegetation in Japan

    Get PDF
    It is known that polyphenols in plants have a high antioxidant capacity. However, there is scarce information on its concentration in native plants and the effect of antioxidant capacity to grazing animals. In this study, polyphenol concentration of available plants was investigated in a species-rich grazing area in north-eastern district of Japan. In addition, polyphenol concentration in blood serum of grazing cattle was also measured. Eight beef cows grazed in a grazing area (hill pasture 3.1 ha; forest 16.9 ha) from late spring to mid-autumn (142 days), and four cows among the eight grazed at an orchardgrass pasture in mid-summer (10 days). During the grazing period, foraging behaviour was directly observed, and plant species proportion in ingesta and residence time in the hill pasture and the forest were measured. Based on these results, the top 10–13 species were hand-clipped by mimicking foraging manner of cows, and total polyphenol and catechin concentration were measured. Blood samples of cows were also collected during the grazing period, and potential antioxidant [PAO] and serum total antioxidant status [STAS] were analysed. The cows ingested 17–32 plant species in the hill pasture, and 53–73 species in the forest. In contrast, the cows ingested mainly orchardgrass in the sown pasture in mid-summer. Total polyphenol and catechin concentration were higher in tree leaves (112.8–209.3 g/kg DM, 0.081–6.250 g/kg DM) than monocots (11.9–34.0 g/kg DM, 0–0.159g/kg DM). However, those concentration in ingesta of the cows were low throughout the seasons (35.0–56.9 g/kg DM, 0.108–0.467 g/kg DM), as in the sown pasture (26.2 g/kg DM, 0.158 g/kg DM), due to high proportion of monocots in ingesta at the hill pasture (67–75%). PAO (373.4–455.8 μ mol/L) and STAS (769.8–910.0 μ mol/L) of the cows were almost constant throughout the seasons

    γCOP Is Required for Apical Protein Secretion and Epithelial Morphogenesis in Drosophila melanogaster

    Get PDF
    Background: There is increasing evidence that tissue-specific modifications of basic cellular functions play an important role in development and disease. To identify the functions of COPI coatomer-mediated membrane trafficking in Drosophila development, we were aiming to create loss-of-function mutations in the γCOP gene, which encodes a subunit of the COPI coatomer complex. Principal Findings: We found that γCOP is essential for the viability of the Drosophila embryo. In the absence of zygotic γCOP activity, embryos die late in embryogenesis and display pronounced defects in morphogenesis of the embryonic epidermis and of tracheal tubes. The coordinated cell rearrangements and cell shape changes during tracheal tube morphogenesis critically depend on apical secretion of certain proteins. Investigation of tracheal morphogenesis in γCOP loss-of-function mutants revealed that several key proteins required for tracheal morphogenesis are not properly secreted into the apical lumen. As a consequence, γCOP mutants show defects in cell rearrangements during branch elongation, in tube dilation, as well as in tube fusion. We present genetic evidence that a specific subset of the tracheal defects in γCOP mutants is due to the reduced secretion of the Zona Pellucida protein Piopio. Thus, we identified a critical target protein of COPI-dependent secretion in epithelial tube morphogenesis. Conclusions/Significance: These studies highlight the role of COPI coatomer-mediated vesicle trafficking in both general and tissue-specific secretion in a multicellular organism. Although COPI coatomer is generally required for protein secretion, we show that the phenotypic effect of γCOP mutations is surprisingly specific. Importantly, we attribute a distinct aspect of the γCOP phenotype to the effect on a specific key target protein

    Structures of the cGMP-dependent protein kinase in malaria parasites reveal a unique structural relay mechanism for activation.

    Get PDF
    The cyclic guanosine-3',5'-monophosphate (cGMP)-dependent protein kinase (PKG) was identified >25 y ago; however, efforts to obtain a structure of the entire PKG enzyme or catalytic domain from any species have failed. In malaria parasites, cooperative activation of PKG triggers crucial developmental transitions throughout the complex life cycle. We have determined the cGMP-free crystallographic structures of PKG from Plasmodium falciparum and Plasmodium vivax, revealing how key structural components, including an N-terminal autoinhibitory segment (AIS), four predicted cyclic nucleotide-binding domains (CNBs), and a kinase domain (KD), are arranged when the enzyme is inactive. The four CNBs and the KD are in a pentagonal configuration, with the AIS docked in the substrate site of the KD in a swapped-domain dimeric arrangement. We show that although the protein is predominantly a monomer (the dimer is unlikely to be representative of the physiological form), the binding of the AIS is necessary to keep Plasmodium PKG inactive. A major feature is a helix serving the dual role of the N-terminal helix of the KD as well as the capping helix of the neighboring CNB. A network of connecting helices between neighboring CNBs contributes to maintaining the kinase in its inactive conformation. We propose a scheme in which cooperative binding of cGMP, beginning at the CNB closest to the KD, transmits conformational changes around the pentagonal molecule in a structural relay mechanism, enabling PKG to orchestrate rapid, highly regulated developmental switches in response to dynamic modulation of cGMP levels in the parasite

    Advances on the structure of the R2TP/Prefoldin-like complex

    Get PDF
    Cellular stability, assembly and activation of a growing list of macromolecular complexes require the action of HSP90 working in concert with the R2TP/Prefoldin-like (R2TP/PFDL) co-chaperone. RNA polymerase II, snoRNPs and complexes of PI3-kinase-like kinases, a family that includes the ATM, ATR, DNA-PKcs, TRAPP, SMG1 and mTOR proteins, are among the clients of the HSP90-R2TP system. Evidence links the R2TP/PFDL pathway with cancer, most likely because of the essential role in pathways commonly deregulated in cancer. R2TP forms the core of the co-cochaperone and orchestrates the recruitment of HSP90 and clients, whereas prefoldin and additional prefoldin-like proteins, including URI, associate with R2TP, but their function is still unclear. The mechanism by which R2TP/PFLD facilitates assembly and activation of such a variety of macromolecular complexes is poorly understood. Recent efforts in the structural characterization of R2TP have started to provide some mechanistic insights. We summarize recent structural findings, particularly how cryo-electron microscopy (cryo-EM) is contributing to our understanding of the architecture of the R2TP core complex. Structural differences discovered between yeast and human R2TP reveal unanticipated complexities of the metazoan R2TP complex, and opens new and interesting questions about how R2TP/PFLD works

    Tramtrack Is Genetically Upstream of Genes Controlling Tracheal Tube Size in Drosophila

    Get PDF
    The Drosophila transcription factor Tramtrack (Ttk) is involved in a wide range of developmental decisions, ranging from early embryonic patterning to differentiation processes in organogenesis. Given the wide spectrum of functions and pleiotropic effects that hinder a comprehensive characterisation, many of the tissue specific functions of this transcription factor are only poorly understood. We recently discovered multiple roles of Ttk in the development of the tracheal system on the morphogenetic level. Here, we sought to identify some of the underlying genetic components that are responsible for the tracheal phenotypes of Ttk mutants. We therefore profiled gene expression changes after Ttk loss- and gain-of-function in whole embryos and cell populations enriched for tracheal cells. The analysis of the transcriptomes revealed widespread changes in gene expression. Interestingly, one of the most prominent gene classes that showed significant opposing responses to loss- and gain-of-function was annotated with functions in chitin metabolism, along with additional genes that are linked to cellular responses, which are impaired in ttk mutants. The expression changes of these genes were validated by quantitative real-time PCR and further functional analysis of these candidate genes and other genes also expected to control tracheal tube size revealed at least a partial explanation of Ttk's role in tube size regulation. The computational analysis of our tissue-specific gene expression data highlighted the sensitivity of the approach and revealed an interesting set of novel putatively tracheal genes

    Sparse, decorrelated odor coding in the mushroom body enhances learned odor discrimination

    Get PDF
    Sparse coding may be a general strategy of neural systems for augmenting memory capacity. In Drosophila melanogaster, sparse odor coding by the Kenyon cells of the mushroom body is thought to generate a large number of precisely addressable locations for the storage of odor-specific memories. However, it remains untested how sparse coding relates to behavioral performance. Here we demonstrate that sparseness is controlled by a negative feedback circuit between Kenyon cells and the GABAergic anterior paired lateral (APL) neuron. Systematic activation and blockade of each leg of this feedback circuit showed that Kenyon cells activated APL and APL inhibited Kenyon cells. Disrupting the Kenyon cell–APL feedback loop decreased the sparseness of Kenyon cell odor responses, increased inter-odor correlations and prevented flies from learning to discriminate similar, but not dissimilar, odors. These results suggest that feedback inhibition suppresses Kenyon cell activity to maintain sparse, decorrelated odor coding and thus the odor specificity of memories
    • …
    corecore