439 research outputs found

    Digital imaging to simultaneously study device lifetimes of multiple dye-sensitized solar cells

    Get PDF
    In situ degradation of multiple dyes (D35, N719, SQ1 and SQ2) has been investigated simultaneously using digital imaging and colour analysis. The approach has been used to study the air stability of N719 and squaraine dyes adsorbed onto TiO2 films with the data suggesting this method could be used as a rapid screening technique for DSC dyes and other solar cell components. Full DSC devices have then been tested using either D35 or N719 dyes and these data have been correlated with UV-vis, IR and XPS spectroscopy, mass spectrometry, TLC and DSC device performance. Using this method, up to 21 samples have been tested simultaneously ensuring consistent sample exposure. Liquid electrolyte DSC devices have been tested under light soaking including the first report of D35 testing with I�/I3 � electrolyte whilst operating at open circuit, short circuit, or under load, with the slowest degradation shown at open circuit. D35 lifetime data suggest that this dye degrades after ca. 370 h light soaking regardless of UV filtering. Control, N719 devices have also been light soaked for 2500 h to verify the imaging method and the N719 device data confirm that UV filtration is essential to protect the dye and I3 �/I� electrolyte redox couple to maintain device lifetime. The data show a direct link between the colour intensity and/or hue of device sub-components and device degradation, enabling “real time” diagnosis of device failure mechanisms

    Structural arrangement of crystalline/amorphous phases of polyethylene-block-polystyrene copolymer as induced by orientation techniques

    Get PDF
    A polyethylene-block-polystyrene copolymer film having a bicontinuous crystalline/amorphous phases was tensile-drawn under various conditions for the structural arrangement of these phases. The prepared film could be drawn below the melting temperature of the polyethylene component, with the highest drawability obtained at 60ーC. However, the initial bicontinuous structure was gradually destroyed with increasing strain because the drawing temperature was lower than the glass-transition temperature of the polystyrene component. Correspondingly, a necking phenomenon was clearly recognizable when samples were drawn. In contrast, drawing near the melting temperature of the polyethylene component produced less orientation of both the crystalline and amorphous phases, resulting in homogeneous deformation with lower drawing stress. These results indicated that the modification of the lower ductility of the polystyrene component was key to the effective structural arrangement of both phases by tensile drawing. Here, a solvent-swelling technique was applied to improve polystyrene deformability even below its glass-transition temperature. Tensile drawing after such a treatment successfully induced the orientation of both the crystalline and amorphous phases while retaining their initial continuities. A change in the deformation type from necking to homogeneous deformation was also confirmed for the stress-strain behavior

    Optimization of 3D ZnO brush-like nanorods for dye-sensitized solar cells

    Get PDF
    © 2018 The Royal Society of Chemistry This is an Open Access article, distributed under the terms of the Creative Commons Attribution Unported 3.0 license (CC BY 3.0), https://creativecommons.org/licenses/by/3.0/ which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly citedIn a dye-sensitized solar cell (DSSC) the amount of adsorbed dye on the photoanode surface is a key factor that must be maximized in order to obtain enhanced DSSC performance. In this study 3D ZnO nanostructures, named brush-like, are demonstrated as alternative photoanodes. In these structures, long ZnO nanorods are covered with a metal-organic precursor, known as a layered-hydroxide zinc salt (LHZS), which is subsequently converted to crystalline ZnO using two-step annealing. The LHZS is able to easily grow on any surface, such as the ZnO nanorod surface, without needing the assistance of a seed-layer. Brush-like structures synthesized using different citrate concentrations in the growth solutions and different annealing conditions are characterized and tested as DSSC photoanodes. The best-performing structure reported in this study was obtained using the highest citrate concentration (1.808 mM) and the lowest temperature annealing condition in an oxidative environment. Conversion efficiency as high as 1.95% was obtained when these brush-like structures were employed as DSSC photoanodes. These results are extremely promising for the implementation of these innovative structures in enhanced DSSCs, as well as in other applications that require the maximization of surface area exposed by ZnO or similar semiconductors, such as gas- or bio-sensing or photocatalysis.Peer reviewedFinal Published versio

    Low temperature sintering of aqueous TiO2 colloids for flexible, co-sensitized dye-sensitized solar cells

    Get PDF
    Colloidal TiO2 films have been prepared using a binder-free aqueous paste with Degussa P25 and hexafluorotitanic acid (H2TiF6), which was optimised for different substrates. Dye-sensitized solar cells (DSSC) fabricated using this paste were sintered at (ca. 393 K) and efficiencies (η) of 3.0, 4.2 and 6.1% were measured for devices using titanium foil (ca. 1 mm thickness), indium-doped tin oxide on polyethylene terephthalate (ITO-PET), and for co-sensitized devices on fluorine-doped tin oxide (FTO) glass substrates, respectively. Electrochemical impedance measurements show that the charge transport resistance is less consistent for devices fabricated at low sintering temperature (ca. 393 K) by comparison to devices sintered at 773 K. These measurements correlate with the increased variation in device efficiency (η) for low temperature sintered DSSC devices

    A perspective on using experiment and theory to identify design principles in dye-sensitized solar cells

    Get PDF
    Dye-sensitized solar cells (DSCs) have been the subject of wide-ranging studies for many years because of their potential for large-scale manufacturing using roll-to-roll processing allied to their use of earth abundant raw materials. Two main challenges exist for DSC devices to achieve this goal; uplifting device efficiency from the 12 to 14% currently achieved for laboratory-scale ‘hero’ cells and replacement of the widely-used liquid electrolytes which can limit device lifetimes. To increase device efficiency requires optimized dye injection and regeneration, most likely from multiple dyes while replacement of liquid electrolytes requires solid charge transporters (most likely hole transport materials – HTMs). While theoretical and experimental work have both been widely applied to different aspects of DSC research, these approaches are most effective when working in tandem. In this context, this perspective paper considers the key parameters which influence electron transfer processes in DSC devices using one or more dye molecules and how modelling and experimental approaches can work together to optimize electron injection and dye regeneration. This paper provides a perspective that theory and experiment are best used in tandem to study DSC device

    What difference does a thiophene make? Evaluation of a 4,4′-bis(thiophene) functionalised 2,2′-bipyridyl copper(I) complex in a dye-sensitized solar cell

    Get PDF
    AbstractThe synthesis of a 4,4′-bis(2-thienyl-5-carboxylic acid) functionalised 2,2′-bipyridine ligand and corresponding copper(I) complex is described and its application in a dye-sensitized solar cell (DSSC) is studied. The positioning of the thiophene groups appears favourable from DFT analysis and a best efficiency of 1.41% was obtained with this dye, for a 0.3 cm2 cell area DSSC. Two absorbance bands are observed in the electronic absorption spectrum of the copper(I) complex at 316 nm and 506 nm, with ε values of 50,000 M−1 cm−1 and 9030 M−1 cm−1, respectively. Cyclic voltammetry and electrochemical impedance spectroscopy are also used to provide a detailed analysis of the dye and assess its functionality in a DSSC

    Computational Investigation of Acene-Modified Zinc-Porphyrin Based Sensitizers for Dye-Sensitized Solar Cells

    Full text link
    corecore