63 research outputs found

    Quantifying the effects of high temperature and water stress in groundnut (Arachis hypogaea L.)

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN042178 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Growth and production of groundnut

    Get PDF
    The groundnut or peanut is one of the important legume crops of tropical and semiarid tropical countries, where it provides a major source of edible oil and vegetable protein. Groundnut kernels contain 47-53% oil and 25-36% protein. The crop is cultivated between 40ºN to 40ºS of the equator. Groundnut is a self pollinated crop whereby flowers are produced above ground and, after fertilization, pegs move towards the soil, and seed-containing pods are formed and developed underneath the soil. The productivity of groundnuts varies from 3500 kg/ha in the United States of America to 2500 kg/ha in South America, 1600 kg/ha in Asia, and less than 800 kg/ha in Africa. This is due mainly to various abiotic and biotic constraints. Abiotic stresses of prime importance include temperature extremes, drought stress, soil factors such as alkalinity, poor soil fertility and nutrient deficiencies. Groundnuts grow best in light textured sandy loam soils with neutral pH. Optimum temperature for their growth and development ranges from 28 to 30 ºC; the crop requires about 500-600 mm of well distributed rainfall. The main yield limiting factors in semiarid regions are drought and high temperature stress. The stages of reproductive development prior to flowering, at flowering and at early pod development, are particularly sensitive to these constraints. Apart from N, P and K, other nutrient deficiencies causing significant yield losses are Ca, Fe and B. Biotic stresses mainly include pests, diseases and weeds. Among insects pests pod borers, aphids and mites are of importance. The most important diseases are leaf spots, rusts and the toxin-producing fungus Aspergillus

    Dihydroisoxazole inhibitors of Anopheles gambiae seminal transglutaminase AgTG3

    Get PDF
    Background: Current vector-based malaria control strategies are threatened by the rise of biochemical and behavioural resistance in mosquitoes. Researching mosquito traits of immunity and fertility is required to find potential targets for new vector control strategies. The seminal transglutaminase AgTG3 coagulates male Anopheles gambiae seminal fluids, forming a ‘mating plug’ that is required for male reproductive success. Inhibitors of AgTG3 can be useful both as chemical probes of A. gambiae reproductive biology and may further the development of new chemosterilants for mosquito population control. Methods: A targeted library of 3-bromo-4,5-dihydroxoisoxazole inhibitors were synthesized and screened for inhibition of AgTG3 in a fluorescent, plate-based assay. Positive hits were tested for in vitro activity using cross-linking and mass spectrometry, and in vivo efficacy in laboratory mating assays. Results: A targeted chemical library was screened for inhibition of AgTG3 in a fluorescent plate-based assay using its native substrate, plugin. Several inhibitors were identified with IC50 < 10 μM. Preliminary structure-activity relationships within the library support the stereo-specificity and preference for aromatic substituents in the chemical scaffold. Both inhibition of plugin cross-linking and covalent modification of the active site cysteine of AgTG3 were verified. Administration of an AgTG3 inhibitor to A. gambiae males by intrathoracic injection led to a 15% reduction in mating plug transfer in laboratory mating assays. Conclusions: A targeted screen has identified chemical inhibitors of A. gambiae transglutaminase 3 (AgTG3). The most potent inhibitors are known inhibitors of human transglutaminase 2, suggesting a common binding pose may exist within the active site of both enzymes. Future efforts to develop additional inhibitors will provide chemical tools to address important biological questions regarding the role of the A. gambiae mating plug. A second use for transglutaminase inhibitors exists for the study of haemolymph coagulation and immune responses to wound healing in insects

    Impacts of management practices on bioenergy feedstock yield and economic feasibility on Conservation Reserve Program grasslands

    Get PDF
    Citation: Anderson, E. K., Aberle, E., Chen, C., Egenolf, J., Harmoney, K., Kakani, V. G., . . . Lee, D. (2016). Impacts of management practices on bioenergy feedstock yield and economic feasibility on Conservation Reserve Program grasslands. GCB Bioenergy. doi:10.1111/gcbb.12328Perennial grass mixtures planted on Conservation Reserve Program (CRP) land are a potential source of dedicated bioenergy feedstock. Long-term nitrogen (N) and harvest management are critical factors for maximizing biomass yield while maintaining the longevity of grass stands. A six-year farm-scale study was conducted to understand the impact of weather variability on biomass yield, determine optimal N fertilization and harvest timing management practices for sustainable biomass production, and estimate economic viability at six CRP sites in the United States. Precipitation during the growing season was a critical factor for annual biomass production across all regions, and annual biomass production was severely reduced when growing season precipitation was below 50% of average. The N rate of 112 kg ha-1 produced the highest biomass yield at each location. Harvest timing resulting in the highest biomass yield was site-specific and was a factor of predominant grass type, seasonal precipitation, and the number of harvests taken per year. The use of N fertilizer for yield enhancement unambiguously increased the cost of biomass regardless of the harvest timing for all six sites. The breakeven price of biomass at the farmgate ranged from 37to37 to 311 Mg-1 depending on the rate of N application, timing of harvesting, and location when foregone opportunity costs were not considered. Breakeven prices ranged from 69to69 to 526 Mg-1 when the loss of CRP land rental payments was included as an opportunity cost. Annual cost of the CRP to the federal government could be reduced by over 8% in the states included in this study; however, this would require the biomass price to be much higher than in the case where the landowner receives the CRP land rent. This field research demonstrated the importance of long-term, farm-scale research for accurate estimation of biomass feedstock production and economic viability from perennial grasslands. © 2016 John Wiley & Sons Ltd

    Pump it Up workshop report

    Get PDF
    Workshop held 28-29 September 2017, Cape Cod, MAA two-day workshop was conducted to trade ideas and brainstorm about how to advance our understanding of the ocean’s biological pump. The goal was to identify the most important scientific issues that are unresolved but might be addressed with new and future technological advances

    UV-B radiation modifies the acclimation processes to drought or cadmium in wheat

    Get PDF
    Under natural conditions plants are often subjected to multiple stress factors. The main aim of the present work was to reveal how UV-B radiation affects acclimation to other abiotic stressors. Wheat seedlings grown under normal light conditions or normal light supplemented with UV-B radiation were exposed to drought or Cd stress and were screened for changes in the contents of salicylic acid and its putative precursor ortho-hydroxy-cinnamic acid, and in the activity of the key synthesis enzyme, phenylalanine ammonia lyase. Certain other protective mechanisms, such as antioxidant enzyme activities and polyamines, were also investigated. PEG treatment under UV-B radiation did not cause wilting, but resulted in more pronounced salicylic acid accumulation, which may provide protection against drought stress in wheat plants. In contrast, the high level of salicylic acid accumulation in Cd-treated plants was not further enhanced by UV-B stress, but resulted in pronounced oxidative stress and the activation of antioxidant systems and polyamine synthesis. Changes in the levels of phenolic compounds are accompanied by increased phenylalanine ammonia lyase activity in the roots, but not in the leaves. The similar pattern observed for stress-induced changes in salicylic acid and ortho-hydroxy-cinnamic acid contents suggested that salicylic acid may play a decisive role via ortho-hydroxy-cinnamic acid. The results indicated that UV-B radiation might have either a positive or negative impact under the same conditions in wheat, depending on the type of secondary abiotic stress factor. The protective or damaging effects observed may be related to changes in the levels of phenolic compounds

    Multiband Superconductivity in Heavy Fermion Compound CePt3Si without Inversion Symmetry: An NMR Study on a High-Quality Single Crystal

    Full text link
    We report on novel superconducting characteristics of the heavy fermion (HF) superconductor CePt3Si without inversion symmetry through 195Pt-NMR study on a single crystal with T_c= 0.46 K that is lower than T_c= 0.75 K for polycrystals. We show that the intrinsic superconducting characteristics inherent to CePt3Si can be understood in terms of the unconventional strong-coupling state with a line-node gap below T_c= 0.46 K. The mystery about the sample dependence of T_c is explained by the fact that more or less polycrystals and single crystals inevitably contain some disordered domains, which exhibit a conventional BCS s-wave superconductivity (SC) below 0.8 K. In contrast, the Neel temperature T_N= 2.2 K is present regardless of the quality of samples, revealing that the Fermi surface responsible for SC differ from that for the antiferromagnetic order. These unusual characteristics of CePt3Si can be also described by a multiband model; in the homogeneous domains, the coherent HF bands are responsible for the unconventional SC, whereas in the disordered domains the conduction bands existing commonly in LaPt3Si may be responsible for the conventional s-wave SC. We remark that some impurity scatterings in the disordered domains break up the 4f-electrons-derived coherent bands but not others. In this context, the small peak in 1/T_1 just below T_c reported in the previous paper (Yogi et al, 2004) is not due to a two-component order parameter composed of spin-singlet and spin-triplet Cooper pairing states, but due to the contamination of the disorder domains which are in the s-wave SC state.Comment: 10 pages, 9 figures, Accepted for publication in J. Phys. Soc. Jpn., vol.78, No.1 (2009

    Effects of Ultraviolet-B Radiation on Cotton (Gossypium hirsutum L.) Morphology and Anatomy

    No full text
    corecore