183 research outputs found

    Sensitivity analyses of OH missing sinks over Tokyo metropolitan area in the summer of 2007

    Get PDF
    OH reactivity is one of key indicators which reflect impacts of photochemical reactions in the atmosphere. An observation campaign has been conducted in the summer of 2007 at the heart of Tokyo metropolitan area to measure OH reactivity. The total OH reactivity measured directly by the laser-induced pump and probe technique was higher than the sum of the OH reactivity calculated from concentrations and reaction rate coefficients of individual species measured in this campaign. And then, three-dimensional air quality simulation has been conducted to evaluate the simulation performance on the total OH reactivity including "missing sinks", which correspond to the difference between the measured and calculated total OH reactivity. The simulated OH reactivity is significantly underestimated because the OH reactivity of volatile organic compounds (VOCs) and missing sinks are underestimated. When scaling factors are applied to input emissions and boundary concentrations, a good agreement is observed between the simulated and measured concentrations of VOCs. However, the simulated OH reactivity of missing sinks is still underestimated. Therefore, impacts of unidentified missing sinks are investigated through sensitivity analyses. In the cases that unknown secondary products are assumed to account for unidentified missing sinks, they tend to suppress formation of secondary aerosol components and enhance formation of ozone. In the cases that unidentified primary emitted species are assumed to account for unidentified missing sinks, a variety of impacts may be observed, which could serve as precursors of secondary organic aerosols (SOA) and significantly increase SOA formation. Missing sinks are considered to play an important role in the atmosphere over Tokyo metropolitan area

    Isoprene oxidation products are a significant atmospheric aerosol component

    No full text
    International audienceGlycolaldehyde, hydroxyacetone, and methylglyoxal, which are known isoprene oxidation products, were collected during two field experiments using an annular denuder sampling system and compared to a model calculation. The compounds in gas and aerosol phases were determined during both experiments. Global variation and distribution of the aerosol mass contribution of the compounds were predicted using the measurements, the box model results, and gas-phase concentrations and humidity simulated by a global 3-D model. Here we report the estimates of a global annual contribution of 35 (10?120) Tg of aerosol organic matter from isoprene

    Seasonal variation of carbon monoxide in northern Japan: Fourier transform IR measurements and source-labeled model calculations

    Get PDF
    Tropospheric carbon monoxide (CO) was measured throughout 2001 using groundbased Fourier transform IR (FTIR) spectrometers at Moshiri 44.4N and Rikubetsu 43.5N) observatories in northern Japan, which are separated by 150 km. Seasonal and day-to-day variations of CO are studied using these data, and contributions from various CO sources are evaluated using three-dimensional global chemistry transport model (GEOS-CHEM) calculations. Seasonal maximum and minimum FTIR-derived tropospheric CO amounts occurred in April and September, respectively. The ratio of partial column amounts between the 0–4 and 0–12 km altitude ranges is found to be slightly greater in early spring. The GEOS-CHEM model calculations generally reproduce these observed features. Source-labeled CO model calculations suggest that the observed seasonal variation is caused by seasonal contributions from various sources, in addition to a seasonal change in chemical CO loss by OH. Changes in meteorological fields largely control the relative importance of various source contributions. The contributions from fossil fuel (FF) combustion in Asia and photochemical CO production have the greatest yearly averaged contribution at 1 km among the CO sources (31% each). The Asian FF contribution increases from winter to summer, because weak southwesterly wind in summer brings more Asian pollutants to the observation sites. The seasonal variation from photochemical CO production is small (±17% at 1 km), likely because of concurrent increases (decreases) of photochemical production and loss rates in summer (winter), with the largest contribution between August and December. The contribution from intercontinental transport of European FF combustion CO is found to be comparable to that of Asian FF sources in winter. Northwesterly wind around the Siberian high in this season brings pollutants from Europe directly to Japan, in addition to southward transport of accumulated pollution from higher latitudes. The influences are generally greater at lower altitudes, resulting in a vertical gradient in the CO profile during winter. The model underestimates total CO by 12–14% between March and June. Satellite-derived fire-count data and the relationship between FTIR-derived HCN and CO amounts are generally consistent with biomass burning influences, which could have been underestimated by the model calculations

    Optimal Taxation and Debt with Uninsurable Risks to Human Capital Accumulation

    Get PDF
    We consider an economy where individuals face uninsurable risks to their human capital accumulation and analyze the optimal level of linear taxes on capital and labor income together with the optimal path of government debt. We show that in the presence of such risks, it is beneficial to tax both labor and capital and to issue public debt. We also assess the quantitative importance of these findings, and show that the benefits of government debt and capital taxes both increase with the magnitude of idiosyncratic risks and the degree of relative risk aversion

    First direct measurements of formaldehyde flux via eddy covariance: implications for missing in-canopy formaldehyde sources

    Get PDF
    We report the first observations of formaldehyde (HCHO) flux measured via eddy covariance, as well as HCHO concentrations and gradients, as observed by the Madison Fiber Laser-Induced Fluorescence Instrument during the BEACHON-ROCS 2010 campaign in a rural, Ponderosa Pine forest northwest of Colorado Springs, CO. A median noon upward flux of ~80 μg m<sup>−2</sup> h<sup>−1</sup> (~24 ppt<sub>v</sub> m s<sup>−1</sup>) was observed with a noon range of 37 to 131 μg m<sup>−2</sup> h<sup>−1</sup>. Enclosure experiments were performed to determine the HCHO branch (3.5 μg m<sup>-2</sup> h<sup>−1</sup>) and soil (7.3 μg m<sup>−2</sup> h<sup>−1</sup>) direct emission rates in the canopy. A zero-dimensional canopy box model, used to determine the apportionment of HCHO source and sink contributions to the flux, underpredicted the observed HCHO flux by a factor of 6. Simulated increases in concentrations of species similar to monoterpenes resulted in poor agreement with measurements, while simulated increases in direct HCHO emissions and/or concentrations of species similar to 2-methyl-3-buten-2-ol best improved model/measurement agreement. Given the typical diurnal variability of these BVOC emissions and direct HCHO emissions, this suggests that the source of the missing flux is a process with both a strong temperature and radiation dependence

    Molar pregnancy and childhood cancer: a population-based linkage study from Denmark

    Get PDF
    We observed a relative risk of 1.40 (95% confidence interval; 0.86–2.16) for cancers diagnosed under the age 20 in 6192 offspring of 3431 mothers with a molar pregnancy, indicating it is not a major determinant of childhood cancer

    Missing peroxy radical sources within a summertime ponderosa pine forest

    Get PDF
    Organic peroxy (RO<sub>2</sub>) and hydroperoxy (HO<sub>2</sub>) radicals are key intermediates in the photochemical processes that generate ozone, secondary organic aerosol and reactive nitrogen reservoirs throughout the troposphere. In regions with ample biogenic hydrocarbons, the richness and complexity of peroxy radical chemistry presents a significant challenge to current-generation models, especially given the scarcity of measurements in such environments. We present peroxy radical observations acquired within a ponderosa pine forest during the summer 2010 Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H<sub>2</sub>O, Organics and Nitrogen – Rocky Mountain Organic Carbon Study (BEACHON-ROCS). Total peroxy radical mixing ratios reach as high as 180 pptv (parts per trillion by volume) and are among the highest yet recorded. Using the comprehensive measurement suite to constrain a near-explicit 0-D box model, we investigate the sources, sinks and distribution of peroxy radicals below the forest canopy. The base chemical mechanism underestimates total peroxy radicals by as much as a factor of 3. Since primary reaction partners for peroxy radicals are either measured (NO) or underpredicted (HO<sub>2</sub> and RO<sub>2</sub>, i.e., self-reaction), missing sources are the most likely explanation for this result. A close comparison of model output with observations reveals at least two distinct source signatures. The first missing source, characterized by a sharp midday maximum and a strong dependence on solar radiation, is consistent with photolytic production of HO<sub>2</sub>. The diel profile of the second missing source peaks in the afternoon and suggests a process that generates RO<sub>2</sub> independently of sun-driven photochemistry, such as ozonolysis of reactive hydrocarbons. The maximum magnitudes of these missing sources (~120 and 50 pptv min<sup>−1</sup>, respectively) are consistent with previous observations alluding to unexpectedly intense oxidation within forests. We conclude that a similar mechanism may underlie many such observations

    Observations of glyoxal and formaldehyde as metrics for the anthropogenic impact on rural photochemistry

    Get PDF
    We present simultaneous fast, in-situ measurements of formaldehyde and glyoxal from two rural campaigns, BEARPEX 2009 and BEACHON-ROCS, both located in Pinus Ponderosa forests with emissions dominated by biogenic volatile organic compounds (VOCs). Despite considerable variability in the formaldehyde and glyoxal concentrations, the ratio of glyoxal to formaldehyde, R&lt;sub&gt;GF&lt;/sub&gt;, displayed a very regular diurnal cycle over nearly 2 weeks of measurements. The only deviations in R&lt;sub&gt;GF&lt;/sub&gt; were toward higher values and were the result of a biomass burning event during BEARPEX 2009 and very fresh anthropogenic influence during BEACHON-ROCS. Other rapid changes in glyoxal and formaldehyde concentrations have hardly any affect on R&lt;sub&gt;GF&lt;/sub&gt; and could reflect transitions between low and high NO regimes. The trend of increased R&lt;sub&gt;GF&lt;/sub&gt; from both anthropogenic reactive VOC mixtures and biomass burning compared to biogenic reactive VOC mixtures is robust due to the short timescales over which the observed changes in R&lt;sub&gt;GF&lt;/sub&gt; occurred. Satellite retrievals, which suggest higher R&lt;sub&gt;GF&lt;/sub&gt; for biogenic areas, are in contrast to our observed trends. It remains important to address this discrepancy, especially in view of the importance of satellite retrievals and in situ measurements for model comparison. In addition, we propose that R&lt;sub&gt;GF&lt;/sub&gt; represents a useful metric for biogenic or anthropogenic reactive VOC mixtures and, in combination with absolute concentrations of glyoxal and formaldehyde, furthermore represents a useful metric for the extent of anthropogenic influence on overall reactive VOC processing via NO&lt;sub&gt;x&lt;/sub&gt;. In particular, R&lt;sub&gt;GF&lt;/sub&gt; yields information about not simply the VOCs dominating reactivity in an airmass, but the VOC processing itself that is directly coupled to ozone and secondary organic aerosol production

    Missing Peroxy Radical Sources Within a Rural Forest Canopy

    Get PDF
    Organic peroxy (RO2) and hydroperoxy (HO2) radicals are key intermediates in the photochemical processes that generate ozone, secondary organic aerosol and reactive nitrogen reservoirs throughout the troposphere. In regions with ample biogenic hydrocarbons, the richness and complexity of peroxy radical chemistry presents a significant challenge to current-generation models, especially given the scarcity of measurements in such environments. We present peroxy radical observations acquired within a Ponderosa pine forest during the summer 2010 Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen - Rocky Mountain Organic Carbon Study (BEACHON-ROCS). Total peroxy radical mixing ratios reach as high as 180 pptv and are among the highest yet recorded. Using the comprehensive measurement suite to constrain a near-explicit 0-D box model, we investigate the sources, sinks and distribution of peroxy radicals below the forest canopy. The base chemical mechanism underestimates total peroxy radicals by as much as a factor of 3. Since primary reaction partners for peroxy radicals are either measured (NO) or under-predicted (HO2 and RO2, i.e. self-reaction), missing sources are the most likely explanation for this result. A close comparison of model output with observations reveals at least two distinct source signatures. The first missing source, characterized by a sharp midday maximum and a strong dependence on solar radiation, is consistent with photolytic production of HO2. The diel profile of the second missing source peaks in the afternoon and suggests a process that generates RO2 independently of sun-driven photochemistry, such as ozonolysis of reactive hydrocarbons. The maximum magnitudes of these missing sources (approximately 120 and 50 pptv min1, respectively) are consistent with previous observations alluding to unexpectedly intense oxidation within forests. We conclude that a similar mechanism may underlie many such observations

    Community characteristics that attract physicians in Japan: a cross-sectional analysis of community demographic and economic factors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In many countries, there is a surplus of physicians in some communities and a shortage in others. Population size is known to be correlated with the number of physicians in a community, and is conventionally considered to represent the power of communities to attract physicians. However, associations between other demographic/economic variables and the number of physicians in a community have not been fully evaluated. This study seeks other parameters that correlate with the physician population and show which characteristics of a community determine its "attractiveness" to physicians.</p> <p>Methods</p> <p>Associations between the number of physicians and selected demographic/economic/life-related variables of all of Japan's 3132 municipalities were examined. In order to exclude the confounding effect of community size, correlations between the physician-to-population ratio and other variable-to-population ratios or variable-to-area ratios were evaluated with simple correlation and multiple regression analyses. The equity of physician distribution against each variable was evaluated by the orenz curve and Gini index.</p> <p>Results</p> <p>Among the 21 variables selected, the service industry workers-to-population ratio (0.543), commercial land price (0.527), sales of goods per person (0.472), and daytime population density (0.451) were better correlated with the physician-to-population ratio than was population density (0.409). Multiple regression analysis showed that the service industry worker-to-population ratio, the daytime population density, and the elderly rate were each independently correlated with the physician-to-population ratio (standardized regression coefficient 0.393, 0.355, 0.089 respectively; each p < 0.001). Equity of physician distribution was higher against service industry population (Gini index = 0.26) and daytime population (0.28) than against population (0.33).</p> <p>Conclusion</p> <p>Daytime population and service industry population in a municipality are better parameters of community attractiveness to physicians than population. Because attractiveness is supposed to consist of medical demand and the amenities of urban life, the two parameters may represent the amount of medical demand and/or the extent of urban amenities of the community more precisely than population does. The conventional demand-supply analysis based solely on population as the demand parameter may overestimate the inequity of the physician distribution among communities.</p
    • …
    corecore