65 research outputs found

    Chimeric Yellow Fever/Dengue Virus as a Candidate Dengue Vaccine: Quantitation of the Dengue Virus-Specific CD8 T-Cell Response

    Get PDF
    We have constructed a chimeric yellow fever/dengue (YF/DEN) virus, which expresses the premembrane (prM) and envelope (E) genes from DEN type 2 (DEN-2) virus in a YF virus (YFV-17D) genetic background. Immunization of BALB/c mice with this chimeric virus induced a CD8 T-cell response specific for the DEN-2 virus prM and E proteins. This response protected YF/DEN virus-immunized mice against lethal dengue encephalitis. Control mice immunized with the parental YFV-17D were not protected against DEN-2 virus challenge, indicating that protection was mediated by the DEN-2 virus prM- and E-specific immune responses. YF/DEN vaccine-primed CD8 T cells expanded and were efficiently recruited into the central nervous systems of DEN-2 virus challenged mice. At 5 days after challenge, 3 to 4% of CD8 T cells in the spleen were specific for the prM and E proteins, and 34% of CD8 T cells in the central nervous system recognized these proteins. Depletion of either CD4 or CD8 T cells, or both, strongly reduced the protective efficacy of the YF/DEN virus, stressing the key role of the antiviral T-cell response

    Type I interferons act directly on CD8 T cells to allow clonal expansion and memory formation in response to viral infection

    Get PDF
    T cell expansion and memory formation are generally more effective when elicited by live organisms than by inactivated vaccines. Elucidation of the underlying mechanisms is important for vaccination and therapeutic strategies. We show that the massive expansion of antigen-specific CD8 T cells that occurs in response to viral infection is critically dependent on the direct action of type I interferons (IFN-Is) on CD8 T cells. By examining the response to infection with lymphocytic choriomeningitis virus using IFN-I receptor–deficient (IFN-IR0) and –sufficient CD8 T cells adoptively transferred into normal IFN-IR wild-type hosts, we show that the lack of direct CD8 T cell contact with IFN-I causes >99% reduction in their capacity to expand and generate memory cells. The diminished expansion of IFN-IR0 CD8 T cells was not caused by a defect in proliferation but by poor survival during the antigen-driven proliferation phase. Thus, IFN-IR signaling in CD8 T cells is critical for the generation of effector and memory cells in response to viral infection

    Interleukin 15 Is Required for Proliferative Renewal of Virus-specific Memory CD8 T Cells

    Get PDF
    The generation and efficient maintenance of antigen-specific memory T cells is essential for long-lasting immunological protection. In this study, we examined the role of interleukin (IL)-15 in the generation and maintenance of virus-specific memory CD8 T cells using mice deficient in either IL-15 or the IL-15 receptor Ξ± chain. Both cytokine- and receptor-deficient mice made potent primary CD8 T cell responses to infection with lymphocytic choriomeningitis virus (LCMV), effectively cleared the virus and generated a pool of antigen-specific memory CD8 T cells that were phenotypically and functionally similar to memory CD8 T cells present in IL-15+/+ mice. However, longitudinal analysis revealed a slow attrition of virus-specific memory CD8 T cells in the absence of IL-15 signals.This loss of CD8 T cells was due to a severe defect in the proliferative renewal of antigen-specific memory CD8 T cells in IL-15βˆ’/βˆ’ mice. Taken together, these results show that IL-15 is not essential for the generation of memory CD8 T cells, but is required for homeostatic proliferation to maintain populations of memory cells over long periods of time

    Emergence of new genotypes and lineages of dengue viruses during the 2012–15 epidemics in southern India

    Get PDF
    Objectives: To genotypically characterize dengue virus (DENV) isolates among dengue-infected children from 2012–13/2014–15 outbreaks in southern India. Methods: Children hospitalized with suspected dengue were tested for dengue RT-PCR targeting Capsid-preMembrane (C-prM) and Envelope (Env) regions. Following virologic confirmation (n = 612), a representative selection of DENV isolates (n = 99) were sequenced for C-prM, aligned using ClustalW and subjected to phylogenetic analysis by maximum-likelihood method in MEGA6. Results: In 2012–13 (n = 113), DENV-3 (44, 38.9%) and DENV-2 (43, 38.1%) predominated; DENV-1 (22, 19.5%) and DENV-4 (1, 0.9%) were less common. The pattern changed in 2014–15 (n = 499), when DENV-1 (329, 65.7%) predominated, followed by DENV-2 (97, 21.2%), DENV-3 (36, 6.7%) and DENV-4 (10, 2.0%). Multiple-serotype co-infections occurred in 2.7% and 5.4% in 2012–13 and 2014–15, respectively. Genotype III (GIII) of DENV-1 predominated (85.7%) in 2012–13, ceding to GI predominance (80.8%) in 2014–15. Among DENV-2, 71.9% (23/32) showed distinct clustering suggesting a new lineage, 'GIVc'. All tested DENV-4 were GIC, whose clustering pattern showed the emergence of two distinct clades. Conclusions: New genotypic/lineage variations in DENV-1 and DENV-2 may have influenced the magnitude and severity of dengue epidemics in southern India during this period. These findings emphasize the role of active surveillance of DENV serotypes/genotypes in aiding outbreak control and vaccine studies. Keywords: Dengue virus, Serotyping, Sequencing, Phylogenetics, Genotypes, Lineage

    Estimating the Precursor Frequency of Naive Antigen-specific CD8 T Cells

    Get PDF
    The constraint of fitting a diverse repertoire of antigen specificities in a limited total population of lymphocytes results in the frequency of naive cells specific for any given antigen (defined as the precursor frequency) being below the limit of detection by direct measurement. We have estimated this precursor frequency by titrating a known quantity of antigen-specific cells into naive recipients. Adoptive transfer of naive antigen-specific T cell receptor transgenic cells into syngeneic nontransgenic recipients, followed by stimulation with specific antigen, results in activation and expansion of both donor and endogenous antigen-specific cells in a dose-dependent manner. The precursor frequency is equal to the number of transferred cells when the transgenic and endogenous responses are of equal magnitude. Using this method we have estimated the precursor frequency of naive CD8 T cells specific for the H-2Db–restricted GP33–41 epitope of LCMV to be 1 in 2 Γ— 105. Thus, in an uninfected mouse containing ∼2-4 Γ— 107 naive CD8 T cells we estimate there to be 100–200 epitope-specific cells. After LCMV infection these 100–200 GP33-specific naive CD8 T cells divide >14 times in 1 wk to reach a total of ∼107 cells. Approximately 5% of these activated GP33-specific effector CD8 T cells survive to generate a memory pool consisting of ∼5 Γ— 105 cells. Thus, an acute LCMV infection results in a >1,000-fold increase in precursor frequency of DbGP33-specific CD8 T cells from 2 Γ— 102 naive cells in uninfected mice to 5 Γ— 105 memory cells in immunized mice

    IPS-1 Is Essential for the Control of West Nile Virus Infection and Immunity

    Get PDF
    The innate immune response is essential for controlling West Nile virus (WNV) infection but how this response is propagated and regulates adaptive immunity in vivo are not defined. Herein, we show that IPS-1, the central adaptor protein to RIG-I-like receptor (RLR) signaling, is essential for triggering of innate immunity and for effective development and regulation of adaptive immunity against pathogenic WNV. IPS-1βˆ’/βˆ’ mice exhibited increased susceptibility to WNV infection marked by enhanced viral replication and dissemination with early viral entry into the CNS. Infection of cultured bone-marrow (BM) derived dendritic cells (DCs), macrophages (Macs), and primary cortical neurons showed that the IPS-1-dependent RLR signaling was essential for triggering IFN defenses and controlling virus replication in these key target cells of infection. Intriguingly, infected IPS-1βˆ’/βˆ’ mice displayed uncontrolled inflammation that included elevated systemic type I IFN, proinflammatory cytokine and chemokine responses, increased numbers of inflammatory DCs, enhanced humoral responses marked by complete loss of virus neutralization activity, and increased numbers of virus-specific CD8+ T cells and non-specific immune cell proliferation in the periphery and in the CNS. This uncontrolled inflammatory response was associated with a lack of regulatory T cell expansion that normally occurs during acute WNV infection. Thus, the enhanced inflammatory response in the absence of IPS-1 was coupled with a failure to protect against WNV infection. Our data define an innate/adaptive immune interface mediated through IPS-1-dependent RLR signaling that regulates the quantity, quality, and balance of the immune response to WNV infection
    • …
    corecore