79 research outputs found

    Enhanced photoinduced birefringence in polymer-dye complexes: Hydrogen bonding makes a difference

    Get PDF
    The authors demonstrate that photoinduced birefringence in azo-dye-doped polymers is strongly enhanced by hydrogen bonding between the guest molecules and the polymer host. The primary mechanism behind the enhancement is the possibility to use high dye doping levels compared to conventional guest-host systems because dye aggregation is restrained by hydrogen bonding. Moreover, hydrogen bonding reduces the mobility of the guest molecules in the polymer host leading to a larger fraction of the induced birefringence to be preserved after the excitation light has been turned off.Peer reviewe

    Electromagnetic multipole theory for optical nanomaterials

    Get PDF
    Optical properties of natural or designed materials are determined by the electromagnetic multipole moments that light can excite in the constituent particles. In this work we present an approach to calculate the multipole excitations in arbitrary arrays of nanoscatterers in a dielectric host medium. We introduce a simple and illustrative multipole decomposition of the electric currents excited in the scatterers and link this decomposition to the classical multipole expansion of the scattered field. In particular, we find that completely different multipoles can produce identical scattered fields. The presented multipole theory can be used as a basis for the design and characterization of optical nanomaterials

    Word-level Symbolic Trajectory Evaluation

    Full text link
    Symbolic trajectory evaluation (STE) is a model checking technique that has been successfully used to verify industrial designs. Existing implementations of STE, however, reason at the level of bits, allowing signals to take values in {0, 1, X}. This limits the amount of abstraction that can be achieved, and presents inherent limitations to scaling. The main contribution of this paper is to show how much more abstract lattices can be derived automatically from RTL descriptions, and how a model checker for the general theory of STE instantiated with such abstract lattices can be implemented in practice. This gives us the first practical word-level STE engine, called STEWord. Experiments on a set of designs similar to those used in industry show that STEWord scales better than word-level BMC and also bit-level STE.Comment: 19 pages, 3 figures, 2 tables, full version of paper in International Conference on Computer-Aided Verification (CAV) 201

    ALS in Finland Major Genetic Variants and Clinical Characteristics of Patients With and Without the C9o7f72 Hexanucleotide Repeat Expansion

    Get PDF
    Background and Objectives To analyze the frequencies of major genetic variants and the clinical features in Finnish patients with amyotrophic lateral sclerosis (ALS) with or without the C9orf72 hexanucleotide repeat expansion. Methods A cohort of patients with motor neuron disease was recruited between 1993 and 2020 at the Helsinki University Hospital and 2 second-degree outpatient clinics in Helsinki. Finnish ancestry patients with ALS fulfilled the diagnosis according to the revised El Escorial criteria and the Awaji-criteria. Two categories of familial ALS (FALS) were used. A patient was defined FALS-A if at least 1 first- or second-degree family member had ALS, and FALS-NP, if family members had additional neurologic or psychiatric endophenotypes. Results Of the 815 patients, 25% had FALS-A and 45% FALS-NP. C9orf72 expansion (C9pos) was found in 256 (31%) of all patients, in 58% of FALS-A category, in 48% of FALS-NP category, and in 23 or 17% of sporadic cases using the FALS-A or FALS-NP definition. C9pos or SOD1 p.D91A homozygosity was found in 328 (40%) of the 815 patients. We compared demographic and clinical characteristics between C9pos and patients with unknown cause of ALS (Unk). We found that the age at onset was significantly earlier and survival markedly shorter in the C9pos vs Unk patients with ALS. The shortest survival was found in bulbar-onset male C9pos patients, whereas the longest survival was found in Unk limb-onset males. Older age at onset associated consistently with shorter survival in C9pos and Unk patients in both limb-onset and bulbaronset groups. There were no significant differences in the frequencies of bulbar-onset and limbonset patients in C9pos and Unk groups. ALS-frontotemporal dementia (FTD) was more common in C9pos (17%) than in Unk (4%) patients, and of all patients with ALS-FTD, 70% were C9pos. Discussion These results provide further evidence for the short survival of C9orf72-associated ALS. A prominent role of the C9orf72 and SOD1 variants was found in the Finnish population. An unusually high frequency of C9pos was also found among patients with sporadic ALS. The enrichment of these 2 variants likely contributes to the high incidence of ALS in Finland.Peer reviewe

    Phase sensitive absolute amplitude detection of surface vibrations using homodyne interferometry without active stabilization

    Get PDF
    A detection scheme for obtaining phase and absolute amplitude information of surface vibrations on microacoustic components using homodyne laser interferometry is described. The scheme does not require active stabilization of the optical path length of the interferometer. The detection setup is realized in a homodyneMichelson interferometer configuration, and selected measurements on a 374 MHz surface acoustic wave fan-shaped filter and two different piezoelectrically actuated micromechanical resonators are presented to demonstrate the performance of the instrument. With the current detection electronics, the interferometer is capable of detecting out-of-plane surface vibrations up to 2 GHz with a lateral resolution of better than 1 μm and with a minimum detectable vibration amplitude of ∼1 pm.Peer reviewe

    Characterization of energy trapping in a bulk acoustic wave resonator

    Get PDF
    Acoustic wave fields both within the active electrode area of a solidly mounted 1.8 GHz bulk acoustic waveresonator, and around it in the surrounding region, are measured using a heterodyne laser interferometer. Plate-wave dispersion diagrams for both regions are extracted from the measurement data. The experimental dispersion data reveal the cutoff frequencies of the acoustic vibration modes in the region surrounding the resonator, and, therefore, the energy trapping range of the resonator can readily be determined. The measureddispersionproperties of the surrounding region, together with the abruptly diminishing amplitude of the dispersion curves in the resonator, signal the onset of acoustic leakage from the resonator. This information is important for verifying and further developing the simulation tools used for the design of the resonators. Experimental wave field images, dispersion diagrams for both regions, and the threshold for energy leakage are discussed.Peer reviewe

    Electromagnetic force density in dissipative isotropic media

    Full text link
    We derive an expression for the macroscopic force density that a narrow-band electromagnetic field imposes on a dissipative isotropic medium. The result is obtained by averaging the microscopic form for Lorentz force density. The derived expression allows us to calculate realistic electromagnetic forces in a wide range of materials that are described by complex-valued electric permittivity and magnetic permeability. The three-dimensional energy-momentum tensor in our expression reduces for lossless media to the so-called Helmholtz tensor that has not been contradicted in any experiment so far. The momentum density of the field does not coincide with any well-known expression, but for non-magnetic materials it matches the Abraham expression

    Extraction of lateral eigenmode properties in thin film bulk acoustic wave resonator from interferometric measurements

    Get PDF
    A heterodyne laser interferometer is used to study acoustic wave fields excited in a 1.8 GHz AlN thin film bulk acoustic waveresonator. The electrical response of the resonator exhibits a strong thickness resonance onto which spurious modes, caused by lateral standing plate waves, are superposed. Optical interferometermeasurements are used to extract dispersion curves of the laterally propagating waves responsible for the spurious responses. A discrete eigenmode spectrum due to the finite lateral dimensions of the resonator is observed. An equivalent circuit model for a multimode resonator is fitted to the mechanical resonator response extracted along a single curve in the dispersion diagram, and is used to determine properties, such as Q-values, of the individual lateral eigenmodes.Measuredwave field images, extracted dispersion curves, and the eigenmode spectrum with the model fitting results are presented.Peer reviewe
    • …
    corecore