Optical properties of natural or designed materials are determined by the
electromagnetic multipole moments that light can excite in the constituent
particles. In this work we present an approach to calculate the multipole
excitations in arbitrary arrays of nanoscatterers in a dielectric host medium.
We introduce a simple and illustrative multipole decomposition of the electric
currents excited in the scatterers and link this decomposition to the classical
multipole expansion of the scattered field. In particular, we find that
completely different multipoles can produce identical scattered fields. The
presented multipole theory can be used as a basis for the design and
characterization of optical nanomaterials